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ABSTRACT 

Large Language Models (LLMs) are a class of transformer-based artificial intelligence models 

designed to process and generate human-like text. With the rise of models like GPT, BERT, and 

their variants, LLMs have significantly transformed various fields, particularly natural language 

processing (NLP), and have become integral to many applications of machine learning and artificial 

intelligence. These models are pivotal in tasks such as sentiment analysis, translation, text 

summarization, and more, reshaping how we interact with technology in both personal and 

professional contexts.  

This thesis explores the foundational concepts and practical implementations of LLMs, focusing on 

three key components: tokenization, embeddings, and fine-tuning. It begins with an overview of the 

transformer model architecture and its various applications. The thesis then delves into the processes 

and types of tokenization and embeddings, followed by the implementation of tokenization and 

embedding algorithms in code. The final chapter includes fine-tuning a smaller LLM, improving its 

performance to match that of an industry scale LLM. The chapter demonstrates how an effectively 

fine-tuned smaller model can replace larger models like GPT for various NLP tasks, while 

maintaining high performance and reducing operational costs.  
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1. THE TRANSFORMER – MODEL OVERVIEW AND 

APPLICATIONS 

 

Introduction 

Natural language processing involves algorithms that help us comprehend, manipulate and produce human 

language. For such natural language tasks, large language models demonstrate exceptional performance and 

flexibility owing to the knowledge they learn in the pre-training. Large language models or “LLMs” are 

neural networks that utilize the transformer architecture. This architecture will be further studied as the 

chapter progresses. 

 

1.1 Transformer architecture 

 The transformer is the standard architecture for building large language models. It includes an encoder which 

takes in the input sequence and passes it on to the decoder through its feedforward network. The input 

sequence is first tokenized using a tokenizer followed by the conversion of these tokens into vectors using 

embeddings [1]. The final input embedding is the sum of token embedding and positional embedding. The 

various parts of the transformer model can be seen in the figure below. 

The transformer feeds these input embeddings into a layer known as the multi-head attention. This layer is 

made up of multiple self-attention layers. The process of assigning weights (parameters) to every word of the 

input relative to every other word is carried out in the self-attention layer. This reveals the relevance of the 

word in the current context [2]. The parameters of every self-attention layer are based on different factors, 

such as, people’s relationship, performed activities, words that rhyme, etc. Depending on the factors 

considered, the self-attention layers are able to establish which words in the input sequence have a closer 

relationship to one another. For example, in the sentence “The cat was sleeping”, the weight between ‘The’ 

and ‘cat’ will have more importance, since the article ‘The’ is referring to the noun ‘cat’ and not ‘was’.  
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FIGURE 1.1 - TRANSFORMER ARCHITECTURE [1] 

 

The feed forward part predicts the next word by trying to assign a score for each word. The weights from the 

previous step are taken as input and processed. Based on the training data, it tries to predict what the next 

word would be (it goes through all words in its vocabulary). Let’s say the model is trying to predict the next 

word in the sentence “The Kangaroo...”. It would ideally assign a very high score to ‘jumped’, maybe a 

medium score to ‘slept’, and definitely a low score to ‘swam’. The output of this is scores (logits) and not 

probabilities. 
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These scores are then converted into probabilities using the Softmax layer. A mathematical function ‘softmax’ 

is used for the conversion such that all of the probabilities add up to 1. Eventually, the word with the highest 

probability is chosen as the next word. The subsequent sections will look into tokenization and embedding 

in more detail.  

 

 

1. 2 Tokenization –  

In LLMs, tokens are not words but a smaller unit, such as, a character or a part of a word, or even an entire 

phrase. The size of a token depends entirely on the algorithm used. Since the transformer cannot read words 

and sentences, they must be first converted into tokens. There is a de-tokenization step at the output of a 

transformer so that we can interpret the output produced. 

 

The process of tokenization first involves establishing the vocabulary (pre-training). Large text data is gathered 

from which the model learns and after applying preliminary tokenization methods, the text is split into words, 

subwords and characters. To generate a set of tokens, a tokenization algorithm such as Byte Pair Encoding 

(BPE), WordPiece or SentencePiece is used. The algorithm is run and a set of subword tokens or characters 

is created. Each such token in the established vocabulary is assigned an integer ID. During real time 

processing, the text is converted into tokens based on the vocabulary and the tokens are mapped to its 

respective ID.  

 

          

FIGURE 1.2A – TOKENIZATION (GPT-4) [3]  
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In the above example, gpt-4’s tokenization method (BPE) is demonstrated. Observe how each word is 

assigned a different token. Also, tokenization is case sensitive. The word cat, depending on where it appears 

in the sentence, whether it has a capital C, or whether all the letters of the word are capital, it has been assigned 

a unique token.  

 

The Byte Pair Encoding method is the most widely used tokenization method in the transformer models. 

This method starts off by assigning each character a single token, followed by merging the most frequently 

appearing adjacent pairs with a two-character long token and so on. In the following example, the byte pair 

“aa” occurs more than once and hence we can replace it with a byte that is not used in the data (“Z”). We 

then replace the pair “ab” with “Y”. Now the two new bytes are also forming a pair and are appearing twice, 

and hence, they can be replaced with a new byte “X”. This is known as recursive byte pair encoding. 

 

FIGURE 1.2B – BYTE PAIR ENCODING  

 

The data cannot be compressed further since no pair of bytes are occurring more than once. In order to 

decompress the data, we can the replacements can be performed in reverse order.  
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1.3 Embeddings –  

The subsequent step after tokenization is token embedding. Token embeddings is a high dimensional space 

where the tokens from the previous step are mapped to a unique position called a vector. Not just text, but 

also objects like images and audio can be represented using embeddings. Such objects are translated to a 

mathematical form depending upon the category they belong to and the factors of traits that they may or may 

not have. Embeddings are used to find similarities between objects and a machine learning model can find a 

similar image or a document using embeddings. For example, look at following image which is representation 

of a two-dimensional space.  

 

FIGURE 1.3A - EMBEDDING (2-D EXAMPLE) 

The files in the top right corner are more relevant to each other and are hence placed closer. The file in the 

bottom left is not similar to any of the other documents and is therefore, placed far apart. Look at the following 

three-dimensional space to further understand this concept. 

 

FIGURE 1.3B - EMBEDDING (3-D EXAMPLE)  
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The words “footballer” and “ball” are placed very close to each other compared to the words “train” and 

“whistle”. Meanwhile the word “noise” is close to “whistle” and “cannonball”. Similarly, the word “whistle” 

sits between “noise” and “train”. 

 

These were examples of only two and three-dimensional embeddings, but the number of dimensions could 

be in the ranges of thousands as in the case of gpt models [4]. Each number in the vector indicates where the 

object is along that direction. For example, the city of Calgary, Canada can be represented with the 

longitudinal coordinates {51.0447° N, 114.0719° W}. This is a simple vector with two numbers. If the model 

wanted to find a city close to Calgary, it will just look for cities with similar coordinates to that of Calgary and 

conclude that the city of Red Deer (closest city to Calgary) is the closest. Now suppose we wanted to find a 

city that was not only close but also as big (population wise) as Calgary. For this task, we will have to include 

another dimension that represents the population of the cities. The vector of Calgary will now become 

{51.0447° N, 114.0719° W, 1600000}. This extra dimension will allow the model to not only find cities that 

are closer to each other (based on the coordinates) but also cities with similar population size (the third 

dimension). The model will conclude that the city of Edmonton, Canada with vector {53.5461° N, 113.4937° 

W, 1200000} is close and of similar size. In this way more and more dimensions can be added to find the 

similarities between two or more things based on certain parameters.  

 

 

FIGURE 1.3C - EMBEDDINGS (4-D EXAMPLE)  

 

In the above example, the vector for the Movie “Back to The Future” would look like {[US], 1985, [Sci-fi], 

116} and for “ZNMD” it would look like {[India], 2011, [Drama], 153}. In none of the dimensions are these 

moives similar and hence when the model is asked for movies similar to “Back to The Future”, it will definitely 

not recommend “ZNMD” but will recommend something like “The Terminator” with the vector {[US], 1984, 

[Sci-fi], 107}.  
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After we have created our token embeddings, we can use these embeddings to calculate the position of every 

token in the sequence of tokens. This process is known as positional embedding. In this step, a vector is 

created for every single token. This vector represents the position of each word in a prompt relative to every 

other word and which helps in understanding the context.  

 

 

FIGURE 1.3D – POSITIONAL EMBEDDING 

 

The final input embedding, which moves on into the attention layer, is a sum of token embedding and 

positional embedding.  

 

 

1.4 Transformer Applications -  

Transformer models have found their applications in solving all kinds of natural language processing tasks. 

However, they are not restricted to NLPs. Transformers are used in computer vision for image classification 

and object detection. Transformer have also achieved proficiency in in predicting protein folding structures.  

Apart from these, speech processing, code generation and recommender systems are some of the many fields 

in which transformers are being used extensively. Let’s take a look at some important NLP tasks that 

transformers are able to perform. For the following examples, we will be using the `pipeline()` function from 

the transformers library. 
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Sentiment Analysis – It is used to analyze text in order to determine whether the emotional tone of the 

message is positive, negative or neutral [5].  

 

 

FIGURE 1.4A - SENTIMENT ANALYSIS [6] 

  

A model is selected by the pipeline that has been fine tuned for sentiment analysis. The model assigned a 

very high score for the label ‘positive’ and hence the emotional tone of this particular text is positive according 

to the model.  

 

Text Generation – After we provide a prompt, which could be an incomplete sentence, the model auto-

completes the sentence.  

 

FIGURE 1.4B – TEXT GENERATION.1 [6] 

 

If we are not happy with the result, we can also choose a model of our choice as follows.  



 9 

 

 

FIGURE 1.4C – TEXT GENERATION.2 [6] 

 

Translation – One of the most used feature/application of transformer models is translation. Text from any 

language can be translated to any target language. An appropriate model has to be chosen in order to facilitate 

the translation. In the figure below, the Helsinki model translates French to English.  

 

 

FIGURE 1.4D – TRANSLATION [6] 

 

An appropriate model has to be chosen in order to facilitate the translation. In the figure above, the Helsinki 

model translates French to English.  

 

Along with the above-mentioned NLP tasks, transformers are also capable of many other tasks such as 

question-answering, summarization, feature-extraction, fill-mask, NER and zero-shot-classification. 
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2. EMBEDDINGS – EXPLANATION AND TYPES 

 

Introduction – 

 

As we have seen in the previous chapter, embeddings are an important component of the transformer model. 

They enable the model to establish relationships between tokens and thus help in the prediction of the next 

word in the output sequence. In this chapter we will look at the embeddings in more details while highlighting 

the different types and their functions.  Two of the most important once that we will focus on are token 

embeddings and positional embeddings.  

 

2.1 Token Embeddings –  

 

These capture the meaning and characteristics of each word and establish its relationship with other words. 

They can be further classified as word, sub-word or character embeddings. Word embeddings map individual 

words to vectors whereas sub-word embeddings are used when the text is tokenized into sub-words (breaking 

each word into smaller parts). Byte-Pair encoding and SentencePiece are examples of sub-word embeddings. 

Pre-trained embeddings such as Word2vec, GloVe and FastText belong to the group of word embeddings. 

When fine linguistic details are to be captured, character embeddings are used which are a character level 

representation of the text.  

 

2.2 Positional Embeddings –  

 

Without positional embeddings, the transformer is unaware of the order of the tokens. Positional embeddings 

help the transformer understand the order/position of tokens in a sequence. The transformer model works 

on each token individually and concurrently, which makes it completely unaware of the order and therefore 

these embeddings become important as they encode the position of each token in the sequence.  
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a) Absolute Sinusoidal Positional Embeddings –  

 

A popular method to encode such positional information is sinusoidal positional embeddings.  

As discussed in Vaswani et. al [1], the sinusoidal positional embeddings are given by,  

 

PE(pos, 2i)=sin(
pos

10000
2i

d

) 

PE(pos, 2i+1)=cos(
pos

10000
2i

d

) 

 

where:  

• pos is the token’s position in the sequence 

• i represents the index of a specific dimension within the embedding vector 

• d represents the total number of dimensions for each token in the embedding vector 

•  

A model is thus able to differentiate between tokens based on their position in the input sequence as these 

sinusoidal embeddings create a positional embedding for each position in the sequence. Look at the image 

below to understand this phenomenon. 

 

 

FIGURE 2 - SINUSOIDAL POSITIONAL EMBEDDINGS [11] 
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Various dimensions are represented by the waves in the image above. The x-axis represents the positions 

whereas the y axis denotes the corresponding embedding for that position. Suppose, for an input sequence 

with embedding vectors of dimension 4, the token at position 4 would have an embedding of around 0.25, 

whereas, a token at position 10 will have a embedding of 1.00. In this way, every position of an input sequence 

is assigned a unique embedding vector. These embeddings are then added to the token embeddings to get 

the final embeddings. Let us look at an example to better understand the process. Consider an input sequence 

“The car drove”. After tokenization, we get three embedding vectors for each of the three tokens [‘The’, ‘car’, 

‘drove’] with a dimension d of 4 as follows,  

 

1) ‘The’ (Ethe): [0.1, 0.2, 0.3, 0.4] 

2) ‘car’ (Ecar): [0.5, 0.6, 0.7, 0.8] 

3) ‘drove’ (Edrove): [0.9, 1.0, 1.1, 1.2] 

 

Computing the positional embeddings involves the following steps, 

For pos 0:  

PE(0,0)= sin(
0

10000
0

4

) = sin(0) =0 

PE(0,1)= cos(
0

10000
0

4

) = cos(0) =1 

PE(0,2)= sin(
0

10000
2

4

) = sin(0) =0 

PE(0,3)= cos(
0

10000
2

4

) = cos(0) =1 

 

Therefore, for pos 0, the positional embedding is [0, 1, 0, 1] 
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For pos 1: 

PE(1,0)= sin(
1

10000
0

4

) = sin(1) =0.8415 

PE(1,1)= cos(
1

10000
0

4

) = cos(1) =0.5403 

PE(1,2)= sin(
1

10000
2

4

) = sin(0.01) =0.01 

PE(1,3)= cos(
1

10000
2

4

) = cos(0.01) =0.99995 

 

Therefore, for pos 1, the positional embedding is [0.8415, 0.5403, 0.01, 0.99995] 

For pos 2: 

PE(2,0)= sin(
2

10000
0

4

) = sin(2) =0.9093 

PE(2,1)= cos(
2

10000
0

4

) = cos(2) =-0.4161 

PE(2,2)= sin(
2

10000
2

4

) = sin(0.02) =0.02 

PE(2,3)= cos(
2

10000
2

4

) = cos(0.02) =0.9998 

 

Therefore, for pos 2, the positional embedding is [0.9093, -0.4161, 0.02, 0.9998] 

 

Consequently, adding these positional embeddings to the token embeddings gives us the final embeddings.  
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For ‘The’:  

FE (The) = TE (The) + PE (0) 

FE (The) = [0.1, 0.2, 0.3, 0.4] + [0, 1, 0, 1] 

FE (The) = [0.1, 1,2, 0.3, 1.4] 

For ‘car’:  

FE (car) = TE (car) + PE (1) 

FE (car) = [0.1, 0.2, 0.3, 0.4] + [0, 1, 0, 1] 

FE (car) = [0.1, 1,2, 0.3, 1.4] 

 

For ‘drove’:  

FE (drove) = TE (drove) + PE (2) 

FE (drove) = [0.1, 0.2, 0.3, 0.4] + [0, 1, 0, 1] 

FE (drove) = [0.1, 1,2, 0.3, 1.4] 

 

 

Along with the semantic information, these final embeddings now also contain positional information.  

 

b) Absolute Learned Positional Embeddings –  

 

These provide an alternative to sinusoidal positional embeddings and are employed in models like BERT, 

GPT and RoBERTa. The performance and the results produced by learned embeddings were found to be 

very similar to sinusoidal embeddings [1]. Learned positional embeddings, instead of using a fixed math 

function as in sinusoidal embeddings, directly learn the positional embedding from the data, just as it would 
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learn other parameters of the model. A position vector is learned for every position in the input sequence. A 

shortcoming of this method is the maximum length that can be represented is bounded. For example, if you 

are only able to learn sequences up to a length of 512, you will not be able to represent the input sequences 

with a number of tokens exceeding 512.  

 

 

c) Relative Postional Embeddings -  

 

Although sinusoidal embeddings are very effective, they fail to provide any information about the closeness 

of tokens. For example, in sinusoidal embeddings, position 1 and position 2 are no different than position 1 

and position 512. In an input sequence of large number of tokens, it is obvious that the tokens at consecutive 

positions (or tokens close to each other) will be more related to each other compared to tokens that are far 

apart, such as tokens at position 1 and position 512.  

 

Relative positional embeddings provide a solution by allowing us to encode information about the relative 

positions of tokens and not just their absolute positions. Instead of representing the absolute position of a 

token, we represent the relative distance between a pair of tokens. For example, in the sentence “I am a 

footballer”, the position of ‘I’ is 1 and ‘footballer’ is 4. Absolute embeddings record these values whereas, 

relative embedding will record the distance between the two words which is 3. So, if token a is at position 3 

and token b is at position 7, the relative position will be     b-a, i.e., 4. 

 

In previous methods, we added the vectors containing such positional information to the token embedding 

vectors. In the case of relative embeddings, the attention scores are modified to include the positional 

information. Such modifications are made by adding a bias term to the attention scores calculations. 

Compared to absolute embeddings, relative embeddings are preferred handling longer sequence lengths and 

generalize better to sequence lengths unseen during training [12]. 
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Let us dive into the math involved in various relative positional encoding methods. Every paper proposes a 

different method to include relative positional information in the transformer. We will look at three papers, 

namely, Shaw et.al (2018) [12], Dai et.al (2019) [13] and Raffel et.al (2020) [14].  

Firstly, we must know that the query, keys and values of the self-attention block are represented by the 

following equations.  

 

q
m

= fq(xm,m) 

kn= fk(xn,n) 

vn= fv(xn,m) 

 

Here, through the functions fq, fk and fv, the mth and nth positions are comprised in qm , kn  and vn. The query 

and key values are then used to calculate the attentions weights and the final output is the calculated as the 

weighted sum over the value representation.  

 

am,n= 

exp(
q

m
T kn

√d
)

∑ expN
j=1 (

q
m
T kn

√d
)

 

om=∑ am,nvn

N

n=1

 

 

Now, in the case of sinusoidal embeddings, the function fk will be written as, fk (xn, n) = Wk (xn+pn). Note that 

‘x’ here represents the token embeddings and ‘p’ represents the positional embeddings. Since, we are 

discussing the case of sinusoidal embeddings, the positional embeddings include the absolute positional 

information. The calculation of this ‘p’ was discussed in the previous section.  
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For, relative embeddings, as discussed in Shaw et.al [12], the functions are represented by the following 

equations.  

fq(xm)=Wqxm 

fk(xn,n)=Wk(xn+p̃
r

k
) 

fv(xn,n)=Wv(xn+p̃
r

v
) 

 

The positional embeddings are now represented by a new element ‘pr’ which comprises of the relative 

positional information between two tokens. In this method, there is no positional embedding in query. The 

‘r’ in these equations is the distance relative distance between positions ‘m’ and ‘n’. So, for a query at position 

m=2 and a key at position n=4, ‘r’ will be equal to 2. Similarly, also for m=51 and n=53, ‘r’ will still be equal 

to 2. This shows that the absolute positions of the tokens lose significance as we are now only focusing in the 

‘closeness’ of the tokens by incorporating the relative distances in the calculations. Notice that they have 

clipped the relative distance, since after a certain amount of distance, the relative positional information seems 

to be of no significant benefit.  

 

The Transformer-XL paper [13], emphasized on the expansion of the ‘q
m
T kn’ term of equation 2 as follows,  

 

𝑞𝑚
𝑇 𝑘𝑛  =   𝑥𝑚

𝑇𝑊𝑞
𝑇𝑊𝑘𝑥𝑛 + 𝑥𝑚

𝑇𝑊𝑞
𝑇𝑊𝑘𝑝𝑛 +  𝑝𝑚

𝑇𝑊𝑞
𝑇𝑊𝑘𝑥𝑛 + 𝑝𝑚

𝑇𝑊𝑞
𝑇𝑊𝑘𝑝𝑛 

 

Along with this paper, many others have worked on the terms pn and pm and proposed that they be replaced 

with certain relative values instead of absolute values. The Transformer-XL paper has made three changes to 

equation 6. Firstly, pn is replaced by a relative embedding as seen in the following equation. Subsequently, the 

term pm is changed depending on where it is appearing in the equation. Observe the third and fourth terms 

of equation 6. In the third term, attention is calculated considering position as query and content as key. On 

the other hand, in the fourth term, attention is calculated using position as query and again position as key. 

For both cases, we have replaced pm with different elements. pm becomes u when key is content (token) and v 

when key is position. u and v vectors are initialized randomly and learned by backpropagation as we train the 

model.  Lastly, the same vector Wk was being shared with both xn and pn. To have different weights for both 
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content and position, a new Wk was used with the position term pn. All these changes have resulted in the 

following equation.  

 

𝑞𝑚
𝑇 𝑘𝑛  =   𝑥𝑚

𝑇𝑊𝑞
𝑇𝑊𝑘𝑥𝑛 + 𝑥𝑚

𝑇𝑊𝑞
𝑇𝑊̃𝑘 𝑝̃𝑚−𝑛 +  𝑢𝑚

𝑇𝑊𝑞
𝑇𝑊𝑘𝑥𝑛 + 𝑝𝑚

𝑇𝑊𝑞
𝑇𝑊̃𝑘𝑝̃𝑚−𝑛 

 

Authors of the T5 paper [14], while retaining the first term of equation 6, replaced all of the other terms with 

a trainable bias bi,j. 

𝑞𝑚
𝑇 𝑘𝑛  =   𝑥𝑚

𝑇𝑊𝑞
𝑇𝑊𝑘𝑥𝑛 + 𝑏𝑖,𝑗  

 

They also proposed a new equation, making an addition of an extra term to equation 8. The last term of 

equation 6 was reintroduced while using different weights.  

 

𝑞𝑚
𝑇 𝑘𝑛  =   𝑥𝑚

𝑇𝑊𝑞
𝑇𝑊𝑘𝑥𝑛+ 𝑝𝑚

𝑇 𝑈𝑞
𝑇𝑈𝑘𝑝𝑛 +  𝑏𝑖,𝑗 

 

Another paper by He et.al [15], focused on the middle two terms of equation 6 and claimed that the relative 

positions between two tokens can be modelled using only these two terms. They simply replaced pn and pm 

with relative embeddings as follows.   

 

𝑞𝑚
𝑇 𝑘𝑛  =   𝑥𝑚

𝑇𝑊𝑞
𝑇𝑊𝑘𝑥𝑛 + 𝑥𝑚

𝑇𝑊𝑞
𝑇𝑊𝑘𝑝̃𝑚−𝑛 +  𝑝̃𝑚−𝑛

𝑇 𝑊𝑞
𝑇𝑊𝑘𝑥𝑛 

 

In the following section, a brief comparison is made between the performance of various positional 

embeddings discussed in this chapter. Relative embeddings require an extra step in the self-attention layer to 

add the positional matrix to the query-key self-attention matrix. This makes them considerably slower than 

sinusoidal embeddings [16]. This can be observed in the image below.  
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FIGURE 3 - COMPARISON OF TRAINING TIMES, INFERENCE TIMES AND MEMORY USE OF VARIOUS 

POSITIONAL EMBEDDING METHODS [16]. 

 

The T5 Bias here represents the relative embeddings. It can be clearly observed that both training and 

inference speeds are slower with relative embeddings as compared to sinusoidal or rotary positional 

embeddings. They also require more training memory than sinusoidal embeddings and just slightly lesser 

memory than rotary embeddings. Due to such challenges, the use of relative positional embeddings is not 

very common, especially for larger models.  

 

 

d) RoPE Rotary Positional Embeddings -  

 

The biggest difference between absolute/relative embeddings and rotary embeddings is that in rotary 

embeddings we multiply the positional embeddings into the vectors of query and key, instead of adding them 

as in the case of absolute and relative embeddings. So, instead of adding the vectors, we are actually rotating 

the vector by a certain angle theta. This angle represents the absolute position of the token in the sequence. 

The relative positional information is also preserved as the angle between two vectors corresponds to the 

distance between the tokens they represent. Rotary positional embeddings, therefore, encode both the 

absolute positional information and the relative positional information of tokens. In the following section, we 

will look at the math involved in the implementation of rotary embeddings.  

 

The RoFormer paper [17], has discussed about how such rotary positional embeddings can be implemented. 

We will start off with a case where the dimension of the token embedding vector is 2 and then generalize the 

formulation for higher dimensional vectors. The query and key vectors are given by the following formulas. 
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𝑞𝑚 =  𝑓𝑞(𝑥𝑞 ,𝑚) 

𝑘𝑛 =  𝑓𝑘(𝑥𝑘 , 𝑛) 

 

These vectors are represented by two functions fq and fk which take in two arguments. A xm and xn represent 

the content vectors whereas m and n are the positions at which these content vectors lie. In the subsequent 

step, we take a dot product of the query and key vectors. This dot product is defined by a function g which 

has three arguments namely, the content xm of query, content xn of key, and the difference n – m in their 

positions.  

 

𝑞𝑚
𝑇 𝑘𝑛 = 〈𝑓𝑞(𝑥𝑚 ,𝑚), 𝑓𝑘(𝑥𝑛, 𝑛)〉 = 𝑔(𝑥𝑚 , 𝑥𝑛, 𝑛 − 𝑚) 

 

After derivation, we obtain the following representations of the functions.  

 

𝑓𝑞(𝑥𝑚 , 𝑚) = (𝑊𝑞𝑥𝑚)𝑒
𝑖𝑚𝜃 

𝑓𝑘(𝑥𝑛, 𝑛) = (𝑊𝑘𝑥𝑛)𝑒
𝑖𝑛𝜃 

𝑔(𝑥𝑚 , 𝑥𝑛, 𝑛 −𝑚) = 𝑅𝑒[(𝑊𝑞𝑥𝑚)(𝑊𝑘𝑥𝑛) ∗ 𝑒
𝑖(𝑚−𝑛)𝜃] 

 

Here, the angle θ is set to a non-zero constant. Real part of the complex number is represented by ‘Re’ and 

the complex conjugate number of (Wkxn) is (Wkxn)*. We can further represent the above equations in 

matrix multiplication form using rotation matrix.  

 

𝑓{𝑞,𝑘}(𝑥𝑚 ,𝑚) = (
𝑐𝑜𝑠𝑚𝜃 −𝑠𝑖𝑛𝑚𝜃
𝑠𝑖𝑛𝑚𝜃 𝑐𝑜𝑠𝑚𝜃

)(
𝑊{𝑞,𝑘}
(11)

𝑊{𝑞,𝑘}
(12)

𝑊{𝑞,𝑘}
(21)

𝑊{𝑞,𝑘}
(22)
)(
𝑥𝑚
(1)

𝑥𝑚
(2)
) 
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The first matrix is the rotation matrix, the second is the weight matrix and the third is the content vector. 

We will now scale this formulation to embedding vectors with dimensions higher than two. Let us look at a 

case with d=512. Following general equation is used for vectors of dimension d and the rotation matrix gets 

transformed as follows.  

 

𝑓{𝑞,𝑘}(𝑥𝑚 , 𝑚) = 𝑅Θ,𝑚
𝑑 𝑊{𝑞,𝑘}𝑥𝑚 

 

𝑅Θ,𝑚
𝑑 =

(

 
 
 
 
 

𝑐𝑜𝑠 𝑚𝜃1 −𝑠𝑖𝑛 𝑚𝜃1 0 0 … 0 0
𝑠𝑖𝑛 𝑚𝜃1 𝑐𝑜𝑠 𝑚𝜃1 0 0 … 0 0
0 0 𝑐𝑜𝑠 𝑚𝜃2 −𝑠𝑖𝑛 𝑚𝜃2 … 0 0
0 0 𝑠𝑖𝑛 𝑚𝜃2 𝑐𝑜𝑠 𝑚𝜃2 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … 𝑐𝑜𝑠 𝑚𝜃𝑑/2 −𝑠𝑖𝑛 𝑚𝜃𝑑/2
0 0 0 0 … 𝑠𝑖𝑛 𝑚𝜃𝑑/2 𝑐𝑜𝑠 𝑚𝜃𝑑/2 )

 
 
 
 
 

 

 

The above matrix is known as the rotary matrix where every two dimensions are rotated at a time. This 

phenomenon can be observed in the image below.  

 

 

FIGURE 4 - ROPE IMPLEMENTATION [17] 
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See how each angle θ multiplied by position m represents the position of vectors. Also, it must be observed 

that only two dimensions are being rotated at a time. Another observation which can be made is that the 

rotation matrix is extremely sparse. We can overcome this sparsity and improve computational efficiency by 

transforming our rotation matrix to the following form. 

 

𝑅Θ,𝑚
𝑑 =

(

 
 
 
 

𝑥1
𝑥2
𝑥3
𝑥4
⋮

𝑥𝑑−1
𝑥𝑑 )

 
 
 
 

⨂

(

 
 
 
 
 

𝑐𝑜𝑠 𝑚𝜃1
𝑐𝑜𝑠 𝑚𝜃1
𝑐𝑜𝑠 𝑚𝜃2
𝑐𝑜𝑠 𝑚𝜃2

⋮
𝑐𝑜𝑠 𝑚𝜃𝑑/2
𝑐𝑜𝑠 𝑚𝜃𝑑/2)

 
 
 
 
 

+

(

 
 
 
 

−𝑥2
𝑥1
−𝑥4
𝑥3
⋮
−𝑥𝑑
𝑥𝑑−1)

 
 
 
 

⨂

(

 
 
 
 
 

𝑠𝑖𝑛 𝑚𝜃1
𝑠𝑖𝑛 𝑚𝜃1
𝑠𝑖𝑛 𝑚𝜃2
𝑠𝑖𝑛 𝑚𝜃2

⋮
𝑠𝑖𝑛 𝑚𝜃𝑑/2
𝑠𝑖𝑛 𝑚𝜃𝑑/2)

 
 
 
 
 

 

 

RoPE has provided a new way of including positional information in language models. Implementation of 

rotary positional embeddings over other methods has demonstrated better performance in certain 

experiments. When tested against BERT, RoFormer showed lesser MLM loss during the pre-training phase 

[17]. Similarly, when the PerFormer [18] was used with and without RoPE, the training loss was much lower 

in the case when it was used with RoPE. In the following sections we will look at some other embeddings 

which are different from the ones we discussed in the previous sections.  

 

2.3 Contextual embeddings – 

 

 As opposed to simple word embeddings, in contextual embeddings a word can have different embeddings 

based on the context in which the word was found. BERT, which was developed by google uses contextual 

embeddings. Contextual embeddings dynamically adjust the representation of a word depending on its 

surrounding words. Context is very important for proper functioning of language models.  

Consider the following two sentences, 

• “Take a right turn.” 

• “My answer is right.” 
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where the word ‘right’ has different meanings. In traditional embeddings such as Word2Vec, the word ‘right’ 

in both the sentences will have the same token. For the model to accurately comprehend the sentence, it 

becomes mandatory to take the context into consideration. Contextual embeddings take care of this problem 

by assigning a different token to same words if they appear in a different context [19]. Some popular models 

which use contextual embeddings are ELMo (Embeddings from language models, BERT (Bidirectional 

Encoder Representations from Transformers) and GPT-2 (Generative Pre-trained Transformer) [20]. The 

following table compares contextual embeddings with the embeddings discussed in section 2.1. 

Feature Traditional Embeddings 

(Word2Vec, Glove) 

Contextual Embeddings 

(BERT, GPT, ELMo) 

Embedding Type Static Dynamic 

Polysemy Handling  Word senses cannot be 

distinguished 

Can differentiate based on 

context 

Context Awareness Context is ignored Considers context of the 

surrounding  

Representation  Same for every occurrence of the 

word 

Different for each occurrence 

depending in context 

TABLE 1 – COMPARISON BETWEEN CONTEXTUAL AND TRADITIONAL EMBEDDINGS  

 

2.4 Multimodal embeddings –  

 

The type of embeddings we have seen so far deal with representation of texts. When data of different 

modalities such as, images, audio, and video is to be represented, we use multimodal embeddings. The 

features and characteristics of such modalities is captured and represented in vector format using multimodal 

embeddings [21]. These embeddings help models to understand both textual descriptions and visual elements 

simultaneously, which is crucial for tasks such as image captioning. Some other examples, from the many 

different applications of these embeddings are text-to-speech and speech-to-text tasks, and also visual question 

answering, where the model answers questions asked about the content of the image or video [22].  
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Normal embeddings encode and represent relationship between a single data modality such as text or image. 

Multimodal embeddings go a step beyond by encoding and establishing relationship between more than one 

type of data modalities in a shared embedding space. Based this idea, many models such as CLIP and 

ImageBind have been developed. CLIP is a model developed by OpenAI which maps both text and image 

data in the same embedding space [23]. Similarly, ImageBind by MetaAI brings together six different 

modalities namely text, images, audio, depth, thermal and IMU data under a joint embedding space [24]. It 

is able to instantly suggest images based on an audio clip and vice versa [25]. Along with this, ImageBind is 

capable of many other tasks. Multimodal embeddings have thus enabled us to incorporate multiple modalities 

under a single embedding space and hence effective perform such cross-modality tasks.  

 

Embeddings are a crucial inseparable part of transformer models. Both content and positional embeddings 

were studied in the sections above. Numerous types of positional embeddings and the math involved have 

been discussed in detail. Similarly, content embeddings including contextual and multimodal embeddings 

have been covered in this chapter.  
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3. TOKENIZATION – PROCESS AND TYPES 

 

 

Introduction –  

 

Tokenization is the first and a crucial step of transformer models. It transforms the raw text into a certain 

form that enables the model to understand human language. The text is broken down into smaller units called 

tokens (numerical representation of text) which the language model works with. Tokens are not mere 

numerical representations of text but are also used in machine learning pipeline as features. In the following 

section we will look at the different types of tokenizations and the various tokenization methods employed by 

large language models. Let us begin by taking a look at the different types and how the input sequences are 

broken down into workable parts.  

 

3.1 Types of Tokenization 

 

Tokenization is differentiated based on how the piece of text is broken down into smaller parts. It can either 

be broken down into words, characters or sentences in case of large input sequences.  

 

a) Word – Level Tokenization  

 

In word level tokenization, the text is broken down into words which are considered as the smallest 

meaningful units. Methods like this are specifically effective when languages with clear word boundaries such 

as English are to be processed. Although it is very intuitive, there certain limitations associated with it. Words 

are differentiated based on spaces or punctuation marks. For example, look at the following sentence.   
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 “The horse jumped over the fence” 

 

The tokenization will produce – 

 

 [“The”, “horse”, “jumped”, “over”, “the”, “fence”] 

Each word will have its own individual token. Now, since our model can only understand numbers, these 

tokens are converted to integers know as token IDs. Every token is mapped to an unique integer. Although 

word level tokenization is very intuitive, there certain limitations associated with it. If it encounters a word that 

is not available in the model’s vocabulary, that word will be treated as unknown and out of vocabulary. With 

more complex languages, such as German, which forms compound words using smaller words, the model 

would require large vocabularies increasing training time. In such cases, and even with other complex 

languages such as Finnish or Turkish, language specific tokenization techniques must be used. Further, 

languages like Mandarin and Japanese do not use spaces between words, in which case we have to use 

character level tokenization as follows.  

 

b) Character – Level Tokenization  

 

In this method, text is broken down into individual characters. This method is specifically useful when word 

boundaries are not known. Since, every character is an individual token, even unknown words are 

conveniently handled. It is highly flexible but results in longer sequences for the model to process. Observe 

the following sentence to see how each character represents a token. 

 

 “The horse jumped.” 

 

The tokenization will produce – 
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 [“T”, “h”, “e”, “ ”, “h”, “o”, “r”, “s”, “e”, “ ”, “j”, “u”, “m”, “p”, “e”, “d”, “.”] 

 

Observe how spaces and punctuations are also tokenized. In this method, since every character is a valid 

token, the chances of having out-of-vocabulary (OOV) words are close to zero. This also means that it is very 

easy to implement as the need to create large vocabularies is eliminated. Another important point, which was 

a limitation of the previous technique is that character level tokenization works across all scripts (Latin, 

Mandarin, etc.). An important drawback that must be pointed out is that computational complexity of training 

and inference is increased as this technique produces much longer sequences than word level tokenization. 

The model can also experience trouble capturing the meaning as each token comes packed with much less 

information.  

 

c) Subword – Level Tokenization  

 

This tokenization technique combines the best of both word-level and character-level tokenization 

techniques. It is a standard and preferred tokenization technique for large language models [26]. As discussed 

in the previous sections, both the techniques have some limitations. Word-level needs a very large vocabulary 

and can still have many OOV words. Similarly, character-level produces very long sequences and less 

meaningful tokens. Subword-level eliminates both of these limitations. Consider the following word, 

 

“Capitalization” 

 

The tokenization will produce (depending on the algorithm) – 

  

 [“Capital”, “ization”]  

 [“Capital”, “##ization”]  

 [“Cap”, “ital”, “ization”]  
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The two hashes denote that the part ‘ization’ completes the previous word. The main idea behind sub-word 

tokenization is that the frequently appearing words should not be split but the rare words should be split into 

more meaningful subwords.  Therefore, this technique has now enabled the model to handle the common 

words as whole tokens and broken down the rare words into subtokens. The limitations of both the previous 

types of tokenization techniques are thus eliminated. We will no longer have OOV words as rare words will 

be decomposed, and the words are still being tokenized as single tokens resulting in smaller sequences than 

character-level tokenization. Almost all of the currently available models including GPT, BERT, DistilBERT 

and Electra exclusively use subword tokenization [27]. Look at the following section to see how sub-word 

tokenization is implemented.  

 

3.2 Algortihms of Tokenization –  

 

In the previous section, we learned about the different types of tokenization methods that are available for 

NLP task. Now, we will study the various algorithms that are utilized to implement these tokenization 

techniques in large language models.   

 

a) Byte Pair Encoding (BPE)  

 

One of the most widely used sub-word tokenization algorithms is Byte Pair Encoding. According to Gage et 

al., (1994), where this algorithm was first introduced, it is a very straightforward data compression method 

that involves substitution of a new, unused, single byte in the place of a most frequently appearing pair of 

bytes [28].  

 

We first start with normalization and pre-tokenization. Normalization involves some basic tasks such as 

eliminating unnecessary whitespaces, removing accents, lowercasing alphabets, etc. [29]. Pre-tokenization 

focusses on breaking down of the input sequence to word-level. Space tokenization, which separates words 
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based on spaces between them, or any other method that facilitates the decomposition of the input sequence 

into words can be used. 

 

Once the text is broken down into words, we move on to create a character level vocabulary. Every character 

used to form these words is included in this vocabulary. In BPE, frequently appearing pairs are added to this 

vocabulary one by one. Let us look at examples to understand this algorithm in detail.  

 

Suppose our corpus of text includes the following words with corresponding frequencies,  

 

(“flag”, 10), (“grab”, 6), (“can”, 14), (“fan”, 2) 

 

First, we will split each word into characters, such that each word will be represented as tokens, 

 

(“f”, “l”, “a”, “g”, 10), (“g”, “r”, “a”, “b”, 6), (“c”, “a”, “n”, 14), (“f”, “a”, “n”, 2) 

 

This is our corpus represented at a character level. Our vocabulary will include all of these characters. Both 

corpus and vocabulary are shown below.  

 

Corpus –  (“f”, “l”, “a”, “g”, 10), (“g”, “r”, “a”, “b”, 6), (“c”, “a”, “n”, 14), (“f”, “a”, “n”, 2) 

Vocabulary – [ “f”, “l”, “a”, “g”, “r”, “b”, “c”, “n”] 

 

We will add new pairs to this vocabulary that are appearing frequently. The pair (“a”, “n”) is appearing with 

the highest frequency of 16. The second highest one is (“a”, “g”) with 10. Therefore, we choose (“a”, “n”) and 

it will be merged as (“a”, “n”) -> “an”. Our vocabulary will be updated accordingly.  
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Corpus – (“f”, “l”, “a”, “g”, 10), (“g”, “r”, “a”, “b”, 6), (“c”, “an”, 14), (“f”, “an”, 2) 

Vocabulary – [ “f”, “l”, “a”, “g”, “r”, “b”, “c”, “n”, “an”] 

 

Eventually, we may encounter situations where three characters are being used to form token. Currently, a 

two-character pair with highest frequency of 10 is (“a”, “g”). We have another pair which is formed by three 

characters (“c”, “an”) and has a frequency of 14. Therefore, we will merge this three-character pair as (“c”, 

“an”) -> “can”, and update the vocabulary as follows.  

 

Corpus – (“f”, “l”, “a”, “g”, 10), (“g”, “r”, “a”, “b”, 6), (“can”, 14), (“f”, “an”, 2) 

Vocabulary – [ “f”, “l”, “a”, “g”, “r”, “b”, “c”, “n”, “an”, “can”] 

 

We finally have a complete word “can” in our vocabulary. Using the same idea, we merge (“a”, “g”) -> “ag” 

and update the vocabulary.  

 

Corpus – (“f”, “l”, “ag”, 10), (“g”, “r”, “a”, “b”, 6), (“can”, 14), (“f”, “an”, 2) 

Vocabulary – [ “f”, “l”, “a”, “g”, “r”, “b”, “c”, “n”, “an”, “can”, “ag”] 

 

This process is continued until a required vocabulary size is achieved [29]. The size of vocabulary can be 

restricted to a certain number. Now, let us see how the vocabulary created will be used to tokenize a sample 

input sequence. 

Suppose our tokenizer encounters the word “bag”. Since all the characters of the said word are included in 

the vocabulary, it will be tokenized as (“b”, “ag”). Another word “man” will be tokenized differently. Since 

the character “m” does not appear in the vocabulary, this word will be tokenized as (“[UNK]”, “an”).  

 

The BPE algorithm to implement subword tokenization method is pretty straight forward as seen. Due to this 

ease and ability to handle OOV words, use of BPE in natural language processing tasks has shown reduction 
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in the size of language models and improved model performance. This tokenization technique is therefore 

used by models such as GPT-2 and RoBERTA [30]. 

 

b) WordPiece  

 

Word piece is another popular tokenization algorithm used by a bunch of different models. It is quite similar 

to BPE as this algorithm also focusses on merging pairs. However, as in the previous algorithm, we focussed 

on merging the most frequent pairs, in this algorithm we will be merging the pairs using a certain formula. 

This model was first introduced by Schuster et al. back in 2012. According to this paper, the pairs which lead 

to an increase in the likelihood of the training data, when added to the model, are merged first [31]. A better 

understanding of this concept can be gained through the following example. 

 

Suppose we have two pairs (“a”, “##like”) and (“mu”, “##tual”). The two parts of the first pair can frequently 

appear on their own, whereas, in the second the pair, the probability of both the parts appearing alone is quite 

possibly zero. As a result, this algorithm will first merge the second pair. In short, it first merges the pairs who 

are more likely to appear in the corpus as pairs and less likely as individual parts. Look at the following 

formula to understand how this inference was made.  

 

Score = (Frequency_of_Pair) / (Frequency_of_Element_1)] x [Frequency_of_Element_2)] 

 

Pairs with a higher score are merged first. The frequency of the pair is divided by the product of the 

frequencies of individual parts and doing so, the merging of pairs with less frequent individual parts is 

prioritized [32].  

Let us understand this using the same vocabulary we used in the BPE example.  

 

Corpus – (“f”, “##l”, “##a”, “##g”, 10), (“g”, “##r”, “##a”, “##b”, 6), (“c”, “##a”, “##n”, 14), (“f”, “##a”, “##n”, 

2) 
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Vocabulary – [ “f”, “l”, “a”, “g”, “r”, “b”, “c”, “n”] 

 

Notice how the splits are now represented with a slight difference. The hashes are used to denote that a part 

is a continuation of the previous part. Here, the pair with highest frequency of 16 is (“a”, “n”) and the 

frequencies of ‘a’ and ‘n’ are 32 and 16 respectively. The score, therefore, becomes 1/32 which is definitely 

not the highest. The individual frequency of ‘a’ was very high which led to this score and thus every pair 

containing the character ‘a’ will give a high score. Keeping all the pairs containing this character out, we get 

two pairs namely (“f”, “l”) and (“g”, “r”).  Using the same formula, the score for (“f”, “l”) turns out to be 1/12 

and for (“g”, “r”) is 1/6. Hence, (“g”, “r”) is the pair with the highest score and becomes the first pair to be 

merged. The vocabulary takes the following shape.  

 

Corpus – (“f”, “##l”, “##a”, “##g”, 10), (“gr”, “##a”, “##b”, 6), (“c”, “##a”, “##n”, 14), (“f”, “##a”, “##n”, 2) 

Vocabulary – [ “f”, “l”, “a”, “g”, “r”, “b”, “c”, “n”, “gr”] 

 

Note, that the hashes preceding ‘r’ have been removed after the merger with ‘g’. Only one pair without ‘a’ 

now remains and hence it is merged.  

 

Corpus – (“fl”, “##a”, “##g”, 10), (“gr”, “##a”, “##b”, 6), (“c”, “##a”, “##n”, 14), (“f”, “##a”, “##n”, 2) 

Vocabulary – [ “f”, “l”, “a”, “g”, “r”, “b”, “c”, “n”, “gr”, “fl”] 

 

Since, ‘a’ is common to all pairs, we can merge any pair. Let’s merge the first pair we encounter (“fl”, “a”).  

 

Corpus – (“fla”, “##g”, 10), (“gr”, “##a”, “##b”, 6), (“c”, “##a”, “##n”, 14), (“f”, “##a”, “##n”, 2) 

Vocabulary – [ “f”, “l”, “a”, “g”, “r”, “b”, “c”, “n”, “gr”, “fl”, “fla”] 
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In the next step, the pair (“fla”, “g”) has the highest and hence, we merge it.  

 

Corpus – (“fla”, “##g”, 10), (“gr”, “##a”, “##b”, 6), (“c”, “##a”, “##n”, 14), (“f”, “##a”, “##n”, 2) 

Vocabulary – [ “f”, “l”, “a”, “g”, “r”, “b”, “c”, “n”, “gr”, “fl”, “fla”, “flag”] 

 

We got our first complete word! This process can be further continued till the desired vocabulary size is 

achieved. As seen through this example, WordPiece algorithm is largely similar to BPE, except for the fact 

that we use a different rule to select which pair to merge first. There are, however, some other difference that 

must also be pointed out.  

 

As opposed to WordPiece, BPE does not save the merge rules learned, instead only the final vocabulary is 

saved. To tokenize a word, the WordPiece algorithm finds the longest subword of that word in the dictonary 

and splits it at that point [33]. In our case, if we wanted to tokenize the word “flagr” (random word), the 

longest subword present in the vocabulary associated with this word would be “flag” and hence we split there 

and get [“flag”, “##r”]. The final tokenization of “flagr” will be [“flag”, “##r”] since “r” is present in our 

vocabulary. BPE on the other hand would tokenize this word as [“fla”, “##gr”] as the merges learned in order 

are applied.  

 

If we had to tokenize the word “flags” in which the character “s” is not present in the vocabulary, Wordpiece 

algorithm will tokenize this word as [“[UNK]”]. One would imagine it to be [“fla”, “g”, “[UNK]”], as in the 

case of BPE, but the whole word is tokenized as [“[UNK]”] even if a single character is missing in the 

vocabulary. In real case scenario, the chances of a “[UNK]” token appearing are very low as all the characters 

will be included in the vocabulary. WordPiece has proven to be beneficial in decreasing the vocabulary size, 

which leads to text data being encoded efficiently [34]. It has become a preferred tokenizer for foreign 

language models such as Japanese, Korean and Arabic as it was originally designed for solving segmentation 

problem in such languages [32,34]. The BERT model as proposed in Devlin et al., 2018 uses the WordPiece 

tokenization algorithm [35].  
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c) Unigram  

 

Unigram is yet another tokenization techniques which is not much similar to BPE or WordPiece. Instead of 

creating a vocabulary from scratch, as in the two previous algorithms, we start off from a large vocabulary and 

eliminate the unrequired tokens from it, until an optimal desired size vocabulary is achieved. This algorithm, 

first proposed by Kudo (2018), has the ability to output multiple word segmentations with their probabilities 

[35]. This initial vocabulary can be created by any method, even by applying BPE on the original text data.  

 

In Unigram algorithm, while training, we compute a total loss using the current vocabulary over the entire 

corpus of text data. Subsequently, we focus on individual tokens and identify the token who’s removal from 

the vocabulary will result in the highest loss. Such tokens with high loss contribution to the total loss, are 

identified as important tokens and kept in the vocabulary. On the other hand, tokens which do not 

significantly increase the overall loss are eliminated, as their existence in the vocabulary was of less importance.  

 

We don’t remove tokens one by one, but eliminate a chunk of tokens, usually 10 to 20 percent (a 

hyperparameter that can be controlled) of the tokens associated with low increase in loss [36]. We continue 

such iterations until we achieve the required vocabulary size. Note that the base characters are never 

eliminated, to ensure the tokenization of any word.  

 

Before implementing the Unigram algorithm, which involves the calculation of total loss followed by observing 

the changes that occur when we remove certain tokens, we must first understand the tokenization strategy of 

the Unigram model. Let’s start from the corpus used in previous algorithms.  

 

Corpus – (“flag”, 10), (“grab”, 6), (“can”, 14), (“fan”, 2) 

 

The initial vocabulary will include all the substrings. 
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Vocabulary – [ “f”, “l”, “a”, “g”, “fl”, “la”, “ag”, “fla”, “lag, “flag”, “r”, “b”, “gr”, “ra”, “ab”, “gra”, “rab”, “c”, 

“n”, “ca”, “an”, “fa”] 

 

Every token in the Unigram model is considered independent from the token before it. To tokenize a give 

word, we examine the probabilities of all the different segmentations that can be used to form the word. The 

segmentations that give the highest probability are chosen as the tokens of that word. This probability is 

actually the frequency of that particular token divided by the summation of frequencies of all tokens in the 

vocabulary. Take a look at the following example. All the tokens with their frequencies are listed below 

 

(“f”, 12) (“l”, 10) (“a”, 32) (“g”, 6) (“fl”, 10) (“la”, 10) (“ag”, 10) (“fla”, 10) (“lag, 10) (“flag”, 10)  

(“r”, 6) (“b”, 6) (“gr”, 6) (“ra”, 6) (“ab”, 6) (“gra”, 6) (“rab”, 6) (“c”, 14) (“n”, 16) (“ca”, 14) 

(“an”, 16) (“fa”, 2) 

 

Token “ra”, for example, will have a probability of 6/224 (sum of all freq. = 224). To tokenize a given word, 

we will look at all the possible segmentations of that word and calculate the probabilities. As all tokens in this 

method are considered independent, the probability is just the product of probabilities of all tokens used to 

form that word. Note that different combinations of tokens can be used to form the same word. Therefore, 

through calculations we choose the combination that leads to the highest probability and tokenize the word 

using that combination of tokens.  

 

Suppose the word “can” is to be tokenized. It can be segmented as [“c”, “a”, “n”], [“c”, “an”] or [“ca”, “n”]. 

In each of these case, the probabilities are as follows. 

 

P ([“c”, “a”, “n”]) = P (“c”) x P (“a”) x P (“n”) = (14/224) x (32/224) x (16/224) =0.00063 

P ([“c”, “an”]) = P (“c”) x P (“an”) = 0.0044 

P ([“ca”, “n”]) = P (“ca”) x P (“n”) = 0.0044 
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It can be seen that tokenizations with the least number of tokens give out higher probability (hence these will 

be selected). The word “can” will be tokenized as either [“c”, “an”] or [“ca”, “n”] depending on which is 

encountered first in the corpus. Observe how we were able to tokenize the word with least number of tokens 

(2 instead of 3). These calculations are fairly straightforward and easy to implement, however, in real case 

scenarios, the calculations can become quite tedious, and thus an algorithm known as Viterbi algorithm is 

used. This was tokenization process in Unigram model. We will now jump back to the loss calculations part 

of the Unigram algorithm.  

 

During every iteration, we tokenize every word in the corpus and calculate the loss. Every word is associated 

with a score (probability) and the loss is equal to the negative log likelihood of this score. Summing losses for 

all the words gives us the total loss. Observe the following example for a better understanding. Our corpus 

was as follows. 

 

Corpus – (“flag”, 10), (“grab”, 6), (“can”, 14), (“fan”, 2) 

 

Furthermore, the tokenizations for each word were calculated using the steps mentioned previously. The 

scores for every word in our corpus are as follows. 

 

“flag” – [“f”, “lag”] = 0.0024 

“grab” – [“gra”, “b”] = 0.0007 

“can” – [“ca”, “n”] = 0.0044 

“fan” – [“f”, “an”] = 0.0038 

 

Using these scores, the loss is calculated as follows.  
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Formula [27,35]– 

ℒ = −∑log ( ∑ 𝑝(𝑥)

𝑥𝜖𝑆(𝑥𝑖)

)

𝑁

𝑖=1

 

 

Where, x1, x2,…xN are all the words in the training corpus and S(xi) represents all the possible tokenizations 

for the word xi.  

 

10 * (-log(0.0024)) + 6 * (-log(0.0007)) + 14 * (-log(0.0044)) + 2 * (-log(0.0038)) = 191.02 

 

Subsequently, we are required to check how the removal of a token from the vocabulary affects this loss. Such 

calculations are quite cumbersome but can be easily implemented using PyTorch. For the sake of 

demonstration and understanding how tokens are eliminated. Look at the following example.  

 

If we eliminated the token “an”, the word “fan” will have to be tokenized as [“fa”, “n”] which will result in a 

score of 0.00063. This will cause the loss to rise by, 

 

-2 * (-log(0.0038) + 2 * (-log(0.00063) = 3.59 

 

Similarly, if we remove the token “lag” from the word “flag”, the word will be tokenized as [“fla”, “g”] and the 

loss would rise by 2.33. On the other hand, if you look at tokens such as “ca” and “gra”, the removal of these 

tokens would cause absolutely no effect on the loss. The words associated with these tokens, which are “can” 

and “grab”, can be tokenized as [“c”, “an”] and [“g”, “rab”] respectively, with the exact same scores. Hence, 

the loss would be unaffected. The Unigram algorithm will thus eliminate these tokens (and other 10 to 20 

percent of such tokens) and leave the ones whose removal will cause a hike in the loss such as “lag” and “an”. 

The same process is continued until a desired vocabulary size is achieved.  
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According to Kudo (2018), not only does Unigram have the same benefits as the BPE algorithm, but it is also 

more flexible and thanks to its probabilistic language model origins, it is capable of outputting multiple 

segmentations along with their probabilities [35]. Due to such benefits, it is used by models such as T5, 

mBART, AlBERT, Big Bird and XLNet [36].  

 

d) SentencePiece  

 

SentencePiece is not really a tokenization algorithm but it is a tokenization tool used in unison with other 

algorithms such as BPE and Unigram to tokenize and detokenize text. First introduced by Google in Kudo 

& Richardson (2018), SentencePiece eliminates the need of pre-tokenization which segments the input into 

word sequences. Therefore, we can directly train models frow raw sentences, thus enabling us to create an 

end-to-end language independent system [37]. This is especially useful for languages such as Japanese and 

Thai which do not use spaces to separate words. Each character is separated using a special character.  

 

SentencePiece comprises of four components namely, normalization, trainer, encoder and decoder [37]. 

Semantically equivalent Unicode characters are normalized into canonical forms using normalizer. The 

trainer employs a subword segmentation algorithm such as BPE or Unigram to train from the normalized 

corpus. The function of encoder is to utilize the normalizer to normalize the input text and tokenize it into 

subword sequences using the trainer. Decoder on the other hand converts such subword sequences into 

normalized text.  

 

Encoder and decoder are basically tokenizing and detokenizing the text. In the case of SentencePiece, 

however, instead of saying tokenization and detokenization, we say encoding and decoding as it is capable of 

directly converting text to an id sequence. SentencePiece has shown higher BLEU scores over other models, 

for translations between Japanese and English, while using a significantly smaller vocabulary [13]. Another 

important advantage is that it performs lossless tokenization. No information is lost between tokenization and 

detokenization. The exact same normalized text, which was used as input before tokenization, is obtained at 

the end of detokenization step.  Due to these benefits, especially when foreign languages are to be processed, 

SentencePiece automatically becomes an ideal option. Models such as AlBERT, XLnet, Marian and T5 

currently use SentencePiece [27].   
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4. EXPLANATION OF BYTE PAIR ENCODING 

IMPLEMENTATION IN MATLAB 

 

In this section, we will look at a detailed explanation of the code used to implement the BPE tokenization 

algorithm in Matlab. The code is as follows.  

 

4.1 BPE Code 

 

clear 

clc 

 

function vocab = get_vocab(data) 

    % Converts the input data into a vocabulary where each word is split into individual characters 

    % and the frequency of each word is counted. 

    vocab = containers.Map; 

     

    for i = 1:length(data) 

        line = data{i}; 

        words = strsplit(line);  % Split the sentence into words 

         

        for j = 1:length(words) 

            word = words{j}; 

             

            % Split word into characters and add '</w>' to signify end of word 

            word_chars = cellstr(reshape(char(word), 1, [])');  % Convert to cell array of characters 
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            word_chars{end + 1} = '</w>';  % Add the end-of-word marker 

             

            % Join the characters with spaces 

            word_bpe = strjoin(word_chars, ' '); 

             

            % Update frequency in vocab 

            if isKey(vocab, word_bpe) 

                vocab(word_bpe) = vocab(word_bpe) + 1; 

            else 

                vocab(word_bpe) = 1; 

            end 

        end 

    end 

end 

 

function pairs = get_stats(vocab) 

    % Returns the frequency count of pairs of symbols (characters) in the vocabulary. 

    pairs = containers.Map; 

     

    vocabKeys = keys(vocab); 

    for i = 1:length(vocabKeys) 

        word = vocabKeys{i}; 

        freq = vocab(word); 

        symbols = strsplit(word);  % Split the word into individual symbols 

         

        % Iterate through symbol pairs 
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        for j = 1:(length(symbols) - 1) 

            pair = sprintf('%s %s', symbols{j}, symbols{j + 1}); 

            if isKey(pairs, pair) 

                pairs(pair) = pairs(pair) + freq; 

            else 

                pairs(pair) = freq; 

            end 

        end 

    end 

end 

 

function vocab_out = merge_vocab(pair, vocab_in) 

    % Merges the given pair of characters in the vocabulary 

    vocab_out = containers.Map; 

     

    % Create a regular expression for the bigram (pair of symbols) 

    bigram = strrep(pair, ' ', '');  % Merge the two symbols (remove space between them) 

    pattern = ['\<' pair '\>'];  % Look for exact matches (using word boundaries) 

     

    vocabKeys = keys(vocab_in); 

    for i = 1:length(vocabKeys) 

        word = vocabKeys{i}; 

        new_word = regexprep(word, pattern, bigram);  % Merge the pair in the word 

        vocab_out(new_word) = vocab_in(word); 

    end 

end 
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function vocab = byte_pair_encoding(data, n) 

    % Performs Byte Pair Encoding on a given dataset and returns the final vocabulary  

    vocab = get_vocab(data); 

     

    for i = 1:n 

        % Get the current pair frequencies 

        pairs = get_stats(vocab); 

         

        % Check if there are no pairs to merge 

        if isempty(pairs) 

            disp('No more pairs to merge'); 

            break; 

        end 

         

        % Extract keys and values from pairs (this is the frequency map) 

        pairKeys = keys(pairs); 

        pairValues = cell2mat(values(pairs)); 

         

        % Find the most frequent pair 

        [~, bestIdx] = max(pairValues); 

        best = pairKeys{bestIdx};  % The most frequent pair 

         

        % Merge the best pair in the vocabulary 

        vocab = merge_vocab(best, vocab); 

    end 
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    % Display the final vocabulary after all merges 

    disp('Final Vocabulary after all merges:'); 

    vocabKeys = keys(vocab);        % Extracting the final tokens 

    vocabValues = values(vocab);    % Extracting the token frequencies 

     

    % Display each token with its frequency 

    for i = 1:length(vocabKeys) 

        fprintf('%s -> %d\n', vocabKeys{i}, vocabValues{i}); 

    end 

end 

 

corpus = ['In this code we are implementing the byte pair encoding tokenization. BPE merges the most frequent pairs. It is a preferred 

tokenization method in many language models']; 

 

data = strsplit(corpus, '.');  % Split the text into sentences 

n = 150;  % Perform 10 BPE merges 

vocab = byte_pair_encoding(data, n); 

 

disp(vocab); 

 

4.2 Code Explanation 

Let us start with the different functions used. We have used four functions in this code namely, get_vocab, 

get_stats, merges_vocab and the main function which executes the algorithm byte_pair_encoding. A detailed 

explanation of all of these functions is given below.  
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a) function get_vocab(data) 

 

This function is used to create a vocabulary from the input data. The input data in our case will be taken from 

the corpus in the main script. Vocabulary here refers to the collection of words and their corresponding 

frequencies.  

 

function vocab = get_vocab(data) 

We define a new function get_vocab. ‘data’ is the input parameter which contains text from the corpus and 

‘vocab’ will be the output of the function. 

 

vocab = containers.Map; 

Here, we create a map object which stores the words as keys and their frequencies as values.  

 

for i = 1:length(data) 

This loop iterates over each sentence in the input data. Each sentence is treated as a string and processed to 

extract words.  

 

line = data{i}; 

Each sentence (line) is extracted one by one from the data.  

 

words = strsplit(line);   

The line is split into individual words by spaces using ‘strsplit()’. The sentence is converted into a cell array 

of words.  
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for j = 1:length(words) 

The inner loop iterates through each word in the sentence.  

 

word = words{j}; 

Variable ‘word’ stores the current word being processed from the cell array of words.  

 

word_chars = cellstr(reshape(char(word), 1, [])');   

This line coverts the word into individual characters. ‘char(word)’ coverts the string into a character array. 

‘reshape(char(word), 1, [])’ reshapes the word into a column of characters. ‘cellstr()’ converts this character 

column into a cell array where each cell contains one character. The result is a cell array ‘word_chars’ that 

contains each character of the word as a separate element. 

 

word_chars{end + 1} = '</w>';   

A special token ‘<\w>’ is added to the end of ‘word_chars’ to indicate the end of the word. 

 

word_bpe = strjoin(word_chars, ' '); 

Characters in ‘word_chars’ are joined in a new string ‘word_bpe’ with spaces separating each character. For 

example the word “text” in ‘word_chars’ will be {‘t’, ‘e’, ‘x’, ‘t’, ‘<\w>}. The same word in ‘word_bpe’ becomes 

‘t e x t <\w>’.  

 

if isKey(vocab, word_bpe) 

    vocab(word_bpe) = vocab(word_bpe) + 1; 

else 
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    vocab(word_bpe) = 1; 

This loop checks if the processed version of the word exists in the vocab map. If it does, its frequency is 

incremented by 1. If it doesn’t the word is added to the map with the current frequency.  

 

b) function get_stats(vocab) 

 

This function is used to compute and return the frequency count of pairs of characters from the input 

vocabulary. It identifies and counts all the adjacent pairs in the vocabulary.  

 

pairs = containers.Map; 

A map is created to store the frequency of pairs of characters in the vocabulary. The pairs(bigrams) will be 

the keys and their frequencies will be values.  

 

vocabKeys = keys(vocab); 

Extracts all keys (words which are stored as strings of individual characters separated by spaces) from the 

vocab.  

 

for i = 1:length(vocabKeys) 

This loop iterates over each word (key) in the vocab map. 

 

word = vocabKeys{i}; 

‘word’ holds the current word being processed.   

 

freq = vocab(word); 
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Retrieves the frequency of the current word from the vocab map. This value indicates how many times the 

word has appeared in the dataset.  

 

symbols = strsplit(word);   

The current word is split into individual symbols using ‘strsplit(word)’. This converts the string into cell array 

of symbols.  

 

for j = 1:(length(symbols) - 1) 

This loop iterates through the characters (symbols) in the word, looking at pairs of adjacent symbols. The 

loop runs until ‘length(symbols) – 1’, to avoid going out of bounds when accessing symbols{j+1}. 

 

pair = sprintf('%s %s', symbols{j}, symbols{j + 1}); 

A pair of adjacent symbols (characters), meaning two consecutive characters, are joined using a space between 

them.  

 

if isKey(pairs, pair) 

    pairs(pair) = pairs(pair) + freq; 

else 

    pairs(pair) = freq; 

This loop increments the frequency of a pair if it exists or keeps it the same if it does not. 

 

c) function merge_vocab(pair, vocab_in) 
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This function merges the pair of characters into one symbol across all the words in the vocabulary.  

 

function vocab_out = merge_vocab(pair, vocab_in) 

‘vocab_in’ is the input vocabulary. Each key in the map is a word and each word is split into individual 

characters separated by spaces. ‘pair’ is the pair of characters to be merged. ‘vocab_out’ is the ouput 

vocabulary after the pairs are merged.  

 

bigram = strrep(pair, ' ', '');   

This removes the space between the two characters.  

 

pattern = ['\<' pair '\>'];   

Creates a regular expression pattern to find exact matches of the pair in a word. If the pair to be merged is ‘a 

n’, only the full pair ‘a n’ is merged, not the other occurences of ‘a’ and ‘n’ in the word. 

 

vocabKeys = keys(vocab_in); 

Retrieves all the keys in the input vocabulary.  

 

for i = 1:length(vocabKeys) 

This loop iterates through every word in the vocabulary.  

 

word = vocabKeys{i}; 

Retrieves current word from the vocabulary.  
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new_word = regexprep(word, pattern, bigram);   

This line replaces the pairs of symbols with their merged version. ‘regexprep’ is a matlab function that is used 

to perform search and replace operation.  

 

vocab_out(new_word) = vocab_in(word); 

This line updates the new vocabulary ‘vocab_out’ with the transformed word ‘new_word’ and assigns the same 

frequency as the original word in ‘vocab_in’. 

 

d) function byte_pair_encoding(data, n) 

 

This is the main function that performs our algorithm when it is called from the main script. It processes the 

given dataset, applies BPE algorithm, and returns the updated vocabulary after merging the most frequent 

pairs.  

 

vocab = get_vocab(data); 

We call the ‘get_vocab’ function. ‘vocab’ stores the initial vocabulary generated from the input data.  

 

for i = 1:n 

This loop iterates ‘n’ times. ‘n’ is the number of merges to be executed.  

 

pairs = get_stats(vocab); 

We call the ‘get_stats’ function. ‘pairs’ stores the pairs of characters as keys and their frequency as values.  
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if isempty(pairs) 

    disp('No more pairs to merge'); 

    break; 

end 

This loop checks if any character pairs are found and displays the the print statement when none are found.  

 

pairKeys = keys(pairs); 

‘pairKeys’ stores all of the keys from ‘pairs’. ‘keys’ is a matlab function that retrieves the keys from the pairs 

dictionary.  

 

pairValues = cell2mat(values(pairs)); 

Values from ‘pairs’ are stored in ‘pairValues’. ‘cell2mat’ coverts values from cell format to a numeric matrix.  

 

[~, bestIdx] = max(pairValues); 

The ‘max’ function returns the maximum value in ‘pairValues’. The frequency of the maximum value is 

ignored using ‘~’ and only the index of the maximum value is stored using ‘bestIdx’.  

 

best = pairKeys{bestIdx};   

Using ‘bestIdx’, this line retrieves the corresponding pair from ‘pairkeys’. ‘best’ is now the most frequent pair.  

 

vocab = merge_vocab(best, vocab); 
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We call the merge vocab function. This function merges the most frequent ‘best’ pair in all the words of the 

vocabulary.  

 

disp('Final Vocabulary after all merges:'); 

vocabKeys = keys(vocab);        % Extracting the final tokens 

vocabValues = values(vocab);     

The statement within disp is printed and the lists of keys and values from the vocabulary are extracted and 

stored.  

 

for i = 1:length(vocabKeys) 

    fprintf('%s -> %d\n', vocabKeys{i}, vocabValues{i}); 

end 

This loop runs through all the keys in the final vocabulary and the output is printed. 

 

Main Script.  

 

corpus = ['In this code we are implementing the byte pair encoding tokenization. BPE merges the most 

frequent pairs. It is a preferred tokenization method in many language models']; 

 

data = strsplit(corpus, '.');  % Split the text into sentences 

n = 150;  % Perform 150 BPE merges 

vocab = byte_pair_encoding(data, n); 

disp(vocab); 
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Our main script is pretty straightforward and simple. The input text in ‘corpus’ is split into sentences using 

‘strsplit’ and stored in ‘data’. ‘n’ denotes the number of times we perform the merging of the most frequent 

pairs. Finally, we call the ‘byte_pair_encoding’ function and display the final vocabulary.  

 

 

4.3 Experimental Results 

 

In the following section we will see how our code is executing the Byte Pair Encoding tokenization method 

on out given corpus.  

 

I will not go into the theoretical details of how the merging is performed, as it is already discussed  in a previous 

chapter. After 10 merges or 10 iterations of our code, the vocabulary takes the following form: 

 

Final Vocabulary after 10 merges: 

 </w> -> 2 

B P E </w> -> 1 

I n</w> -> 1 

I t</w> -> 1 

a </w> -> 1 

a re</w> -> 1 

b y t e</w> -> 1 

c od e</w> -> 1 

en c od i ng </w> -> 1 

f re q u en t</w> -> 1 

i m p l e m en ti ng </w> -> 1 

i n</w> -> 1 

i s</w> -> 1 
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l a ng u a g e</w> -> 1 

m a n y </w> -> 1 

m e r g e s</w> -> 1 

m e th od </w> -> 1 

m o s t</w> -> 1 

m od e l s</w> -> 1 

p a i r </w> -> 1 

p a i r s</w> -> 1 

p re f e r re d </w> -> 1 

t o k en i z a ti o n</w> -> 2 

th e</w> -> 2 

th i s</w> -> 1 

w e</w> -> 1 

 

It can be observed that certain pairs with high frequencies have been merged already. Pairs such as “re”, “od”, 

“th” have been merged at the end of 10 iterations. The pairs “od” and “th”  appear in many words of the 

corpus, so they must have had a high frequency which led to their early merging. Other pairs with a lower 

frequency will follow in the subsequent iterations. It must also be noted that pairing is not restricted to single 

characters but a single character (or multiple characters) can also be paired to other single or multiple 

characters. For example, “a” can be paired with “re” if this is the pair with highest frequency.  

 

After 50 iterations of our code, that is, after 50 merges, our vocabulary takes the following form: 

 
Final Vocabulary after 50 merges: 

</w> -> 2 

BPE</w> -> 1 

In</w> -> 1 

It</w> -> 1 

a</w> -> 1 

are</w> -> 1 

byte</w> -> 1 

code</w> -> 1 
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en coding</w> -> 1 

f re q u en t</w> -> 1 

i m p l e m en ti ng</w> -> 1 

i n</w> -> 1 

is</w> -> 1 

l anguage</w> -> 1 

m any</w> -> 1 

m e th od </w> -> 1 

m er g e s</w> -> 1 

m o s t</w> -> 1 

m od e l s</w> -> 1 

p re f er re d</w> -> 1 

pair </w> -> 1 

pair s</w> -> 1 

th is</w> -> 1 

the</w> -> 2 

tokenization</w> -> 2 

w e</w> -> 1 

 

It can be observed that at the end of 50 merges, many more characters have been paired and all the characters 

of some words such as “in”, “it”, “tokenization” have been paired to form full words. Therefore, at the end 

of 50 iterations, we can observe some full words in the vocabulary. We can stop iterating further if this is the 

vocabulary that we desire or merging can be continued until all possible pairs have been merged.  

 

After 100 iterations of our code, that is after 100 merges, our vocabulary takes the following form: 

 
No more pairs to merge 

Final Vocabulary after all merges: 

</w> -> 2 

BPE</w> -> 1 

In</w> -> 1 
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It</w> -> 1 

a</w> -> 1 

are</w> -> 1 

byte</w> -> 1 

code</w> -> 1 

encoding</w> -> 1 

frequent</w> -> 1 

implementing</w> -> 1 

in</w> -> 1 

is</w> -> 1 

language</w> -> 1 

many</w> -> 1 

merges</w> -> 1 

method</w> -> 1 

models</w> -> 1 

most</w> -> 1 

pair</w> -> 1 

pairs</w> -> 1 

preferred</w> -> 1 

the</w> -> 2 

this</w> -> 1 

tokenization</w> -> 2 

we</w> -> 1 

  

It can be observed that there are no more pairs left to merge. All of the pairs have been merged and our 

vocabulary now includes full words. The numbers corresponding to the words represent their frequency or 

the number of times they appear in the corpus. The BPE algorithm was therefore, successfully implemented 

using this code and how the merging takes place over different iterations was also observed. Finally, a 

vocabulary with full words obtained after merging all the possible pairs was also achieved.  

 

 



 56 

5. EXPLANATION OF POSITIONAL ENCODING 

IMPLEMENTATION IN MATLAB 

 

The following matlab script implements positional encoding followed by visualization of the same using a 

graph. I have defined a function “positionalEncoding” which generates the positional encodings using sine 

and cosine functions.  

It processes the input sentence by splitting it into words and determining the sequence. Then, according to 

the embedding dimension specified by the user, the positional embeddings are generated. These embeddings 

are then displayed using a plot that compares the embedding vectors of the first and fourth word. This plot 

showcases how different positions in a sequence are encoded uniquely.   

 

5.1 Positional Embedding Code 

  

clear 

clc 

 

function pos_enc = positionalEncoding(sequence_length, embedding_dim) 

    % Initialize the positional encoding matrix 

    pos_enc = zeros(sequence_length, embedding_dim); 

 

    % Loop through each position in the sequence 

    for pos = 1:sequence_length 

        for i = 1:embedding_dim 

            if mod(i, 2) == 0  % Even index (cosine) 

                pos_enc(pos, i) = cos(pos / (10^(i / embedding_dim))); 

            else  % Odd index (sine) 
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                pos_enc(pos, i) = sin(pos / (10^(i / embedding_dim))); 

            end 

        end 

    end 

end 

 

% Input statement 

input_statement = 'Positional embeddings include the positional information of a word into the model'; 

 

% Step 1: Preprocess the input statement (split into words) 

words = strsplit(input_statement); 

 

% Step 2: Determine the sequence length 

sequence_length = length(words);  % Number of words in the input statement 

 

% Step 3: Define the embedding dimension 

embedding_dim = 128;  % For example, 64-dimensional positional embeddings 

 

% Step 4: Generate positional embeddings based on sequence length and embedding dimension 

positional_embeddings = positionalEncoding(sequence_length, embedding_dim); 

 

% Display the positional embeddings 

disp(positional_embeddings) 

 

%% Heat map 

imagesc(positional_embeddings); 
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colorbar; 

title('Positional Embeddings Heatmap'); 

xlabel('Embedding Dimensions'); 

ylabel('Word Position'); 

 

%% Graph 

first_word_embedding = positional_embeddings(1, :); 

%disp('Positional embedding vector for the 1st word:');  

% disp(first_word_embedding); 

 

fourth_word_embedding = positional_embeddings(4, :); 

%disp('Positional embedding vector for the 4th word:');  

%disp(fourth_word_embedding); 

 

figure; 

plot(first_word_embedding, 'b', 'LineWidth', 2); 

hold on; 

plot(fourth_word_embedding, 'r', 'LineWidth', 2); 

legend('1st word', '4th word'); 

xlabel('Embedding Dimension'); 

ylabel('Value'); 

title('Comparison of Positional Embeddings for 1st and 4th Words'); 
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5.2 Code Explanation 

 

Let us start with the function used.  

 

function pos_enc = positionalEncoding(sequence_length, embedding_dim) 

 

This function takes in two arguments, ‘sequence_length’ and ‘embedding_dim’. The first one is an integer 

representing the number of positions in a sequence (words in the sentence). The second is an integer 

representing the size of the embedding vector for each position. The function outputs a matrix ‘pos_enc,’ 

where each row corresponds to the positional embedding of a word.  

 

pos_enc = zeros(sequence_length, embedding_dim); 

 

A matrix ‘pos_enc’ is initialized with zeros. The dimensions of this matrix are ‘sequence_length’ rows by 

‘embedding_dim’ columns. It stores the positional embeddings for each position in the sequence with one 

row per position.  

 

for pos = 1:sequence_length 

This is the outer loop that iterates over all positions in the sequence. The variable ‘pos’ represents the position 

index, ranging from 1 to ‘sequence_length’. For each position, we compute the embedding vector.   

 

for i = 1:embedding_dim 
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This is the inner loop that iterates over each dimension of the embedding vector. The variable ‘i’ represents 

the dimension index. Ranging from 1 to ‘embedding_dim’. Each dimension is calculated differently 

depending on whether ‘i’ is odd or even. 

 

if mod(i, 2) == 0 

Checks if the current dimension index ‘i’ is even using the modulo operator (mod). For even dimensions, the 

embedding value is computed using the cosine function.  

 

pos_enc(pos, i) = cos(pos / (10^(i / embedding_dim))); 

The cosine value is calculated based on the position ‘pos’ divided by a scaling factor. The scaling factor is 

determined by the exponential relationship ‘10^(i / embedding_dim)’. 

 

else 

This branch is executed when the dimension index ‘i’ is odd. For odd dimensions, the embedding value is 

computed using the sine function. 

 

pos_enc(pos, i) = sin(pos / (10^(i / embedding_dim))); 

Similar to the even case, the sine value is calculated using the position ‘pos’ and a scaling factor derived from 

the dimension index.  

 

input_statement = 'Positional embeddings include the positional information of a word into the model'; 

 

A string variable ‘input_statement’ is defined, containing a sentence or text input. This serves as the example 

input that will be processed to extract positional embeddings.  
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words = strsplit(input_statement); 

The input string is split into individual words using the matlab function ‘strsplit’. The default delimiter is 

spaces which results in a cell array ‘words.  

 

sequence_length = length(words); 

The ‘length’ function calculates the length of the ‘words’ array. This value is stored in ‘sequence_length’ which 

represents the total number of words in the input sentence.   

 

embedding_dim = 1024;  

The variable ‘embedding_dim’ can be set to any value of your choice and is currently set to 1024. This variable 

specifies the dimensionality of the positional embeddings. Each word or position in the sequence will be 

represented by 1024 dimensions.  

 

disp(positional_embeddings) 

 

This ‘disp’ function displays the ‘positional_embeddings’ matrix in the command window. The generated 

embeddings can be verified here and if not appropriate, necessary changes can be made by changing the 

embedding dimension or the scaling factor. The scaling factor of 10000, from the original transformers paper, 

does not produce desirable encodings. Instead a factor of 10 was found to be more effective in producing 

accurate and usable encodings.   

 

Now let’s look at the code that was used to create the plot that compares the embeddings of two different 

positions.  

 

first_word_embedding = positional_embeddings(1, :); 
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The positional embedding for the first word is extracted from the "positional_embeddings" matrix. This is 

done by selecting the first row (corresponding to the first word) and all columns (embedding dimensions). 

 

fourth_word_embedding = positional_embeddings(4, :); 

Similarly, the positional embedding for the fourth word is extracted by selecting the fourth row. This is useful 

for comparing embeddings of words at different positions in the sequence. 

 

figure; 

A new figure window is created for plotting. This ensures the plot is displayed in a separate window, making 

it easier to analyze. 

 

plot(first_word_embedding, 'b', 'LineWidth', 2); 

The positional embedding of the first word is plotted as a blue line.  The 'b' specifies the color (blue), and 

‘LineWidth’ adjusts the thickness of the line for better visibility. 

 

hold on; 

The ‘hold on’ command allows multiple plots to be drawn on the same figure without overwriting the existing 

plot. 

 

plot(fourth_word_embedding, 'r', 'LineWidth', 2); 

The positional embedding of the fourth word is plotted as a red line. The 'r' specifies the color (red), and 

‘LineWidth’ ensures the line is clearly visible. 

 

legend('1st word', '4th word'); 
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A legend is added to the plot to differentiate between the two lines. The labels ‘1st word’ and ‘4th word’ 

indicate which line corresponds to which word's embedding. 

 

xlabel('Embedding Dimension'); 

The x-axis is labeled ‘Embedding Dimension’. This indicates that the horizontal axis represents the 

dimensions of the embedding vector. 

 

ylabel('Value'); 

The y-axis is labeled ‘Value’. This indicates that the vertical axis represents the numerical values of the 

embedding components. 

 

title('Comparison of Positional Embeddings for 1st and 4th Words'); 

A title is added to the plot, providing a concise description of its content. This makes the plot easier to 

interpret and understand. 

 

The following lines of code are used to create a heat map that shows the relationship between embedding 

dimensions and word positions.  

 

imagesc(positional_embeddings); 

The ‘imagesc’ function generates a heat map visualization of the ‘positional_embeddings’ matrix. Each cell in 

the heat map corresponds to a value in the matrix, with color intensity representing the magnitude of the 

value. The x-axis represents embedding dimensions, and the y-axis represents word positions. 

 

colorbar; 
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The ‘colorbar’ function adds a color scale to the heat map. This scale provides a reference for interpreting 

the magnitude of the values represented by the colors. For instance, darker colors represent smaller values, 

and brighter colors represent larger values.  

 

title('Positional Embeddings Heatmap'); 

The ‘title’ function adds a title to the heat map. The title ‘Positional Embeddings Heatmap’ provides a clear 

and concise description of the plot, making it easier to understand. 

 

xlabel('Embedding Dimensions'); 

The ‘xlabel’ function labels the x-axis as ‘Embedding Dimensions’. This clarifies that the horizontal axis 

corresponds to the different dimensions of the positional embedding vectors. 

 

ylabel('Word Position'); 

The ‘ylabel’ function labels the y-axis as ‘Word Position’. This clarifies that the vertical axis corresponds to 

the positions of words or tokens in the sequence. 

 

5.3 Experimental Results 

 

In this section we will take a look at the positional embeddings created by our code. We were able to encode 

each position (word) in the input sequence with a unique positional encoding using absolute sinusoidal 

encoding method as discussed in the original transformers paper.  

 

The positional embeddings matrix is shown below. Note that the rows represent each position (word) in the 

input sequence and the columns represent the number of embedding dimension. The following rows and 

columns are extracted from a much larger positional embedding matrix.  



 65 

 

 

FIGURE 5 - POSITIONAL EMBEDDING MATRIX 

 

It can be clearly observed that every embedding dimension of each position has been assigned with an unique 

value. The formula mentioned in the transformers paper for sinusoidal embeddings was used. A scaling factor 

of 10 was used instead of the original 10000. It was observed that the embeddings produced using 10000 as 

a scaling factor were repetitive. Using 10 as a scaling factor instead, enabled the production of unique 

encodings across all dimensions and positions.  

 

We can also observe this using graphs and heat maps. 

 

 

FIGURE 6 - GRAPH & HEAT MAP 62/64 
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The above images represent a graph and heat map of a sequence length of 62 and embedding dimension of 

64. The graph compares the embeddings of 1
st

 and 4
th

 word across 64 dimensions. A sinusoidal pattern along 

with a unique embedding value for each dimension can be observed. 

 

FIGURE 7 - GRAPH & HEAT MAP 62/512 

 

Again, in the above images, a graph and a heat map of a sequence length of 62 and embedding dimension of 

512 can be seen. A similar sinusoidal pattern, as compared to the previous graph can be observed.  

 

 

FIGURE 8 - GRAPH & HEAT MAP 62/1024 

 

 



 67 

A graph and a heat map of a sequence length of 62 and embedding dimension of 512 are seen in the above 

images. All of the heat maps included in this chapter demonstrate similar behaviour regardless of the 

embedding dimensions. Through this map we can visualize the relationship between embedding dimensions 

and word positions. The wave like pattern in the map arises from the alternating sine and cosine functions. 

At lower embedding dimensions, the wave patterns are more tightly packed, due to high frequency 

oscillations. As the dimensions increase, the waves become more spaced due to the lower frequency 

oscillations.  

 

This frequency variation ensures that different dimensions capture positional information at varying 

granularities. Lower embedding dimensions oscillate more rapidly because of their high frequency. This 

means their values change significantly for small changes in position. As a result, they can represent small, 

fine-grained distinctions between nearby positions in a sequence. Higher embedding dimensions oscillate 

more slowly because of their low frequency. This means their values change gradually over a larger range of 

positions. As a result, they capture more general or smoother relationships between positions that are 

farther apart. 

 

FIGURE 9 – EMBEDDING VALUE COMPARISONS BETWEEN DIFFERENT WORD POSITIONS 

 

In the above images, the embedding values of 4
th

, 6
th

, and 11
th

 position are compared with the embedding 

values of 1
st

 position. A distinct sinusoidal wave is seen in each plot representing unique embedding values 

for each position.  

Thus, a fully functioning positional embedding algorithm was implemented in this section through matlab. 

Not only were we able to create unique positional encodings, for each position (word), using an embedding 

vector, but we were also able to visualize these positional embeddings, through plots and maps.  
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6. FINE TUNING A SMALL LLM TO REPLACE AN INDUSTRY 

STANDARD LLM  

 

 

Introduction 

 

Large Language Models demand a significant amount of computation power for their training and inference. 

Training an LLM can cost millions of dollars depending on its size. Models such as Gemini and GPT-4 have 

set back their respective companies anywhere from $30 million to over $100 million [38]. Therefore, it is 

impractical for an average user to create a model from scratch for their own specific use.   

  

Even if we keep the training part aside, using LLMs for inference can also be a costly affair. High quality 

GPUs are required, which makes running such models locally extremely difficult. These models can be run 

on cloud, but if the task requires a certain amount of security, downloading them on a local device becomes 

the only solution. Therefore, instead of using an LLM with a very high number of parameters, we can instead 

train a much smaller LLM on our specific task.  

 

This process is known as fine tuning. With the rise of models like BERT, GPT, and T5, fine-tuning has 

enabled users to achieve state-of-art performance across various NLP (Natural Language Processing) tasks 

such as sentiment analysis, question answering, and text summarization.  A fine-tuned model is a pre-trained 

model trained on a downstream task. The model becomes efficient at solving the problem it was fine-tuned 

on and, despite its smaller size, can achieve performance comparable to a considerably larger model, if trained 

correctly. 

 

In this chapter, we will look at the fine-tuning process in detail, and discuss the different types while focusing 

on parameter efficient methods such as LoRA (Low Rank Adaptation) and quantization. Later, we will fine-

tune a small model to match the performance of a significantly bigger industry scale model.  
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6.1 Fine-Tuning: Concept and Types 

 

Fine-tuning is the process of taking a pre-trained model and adapting it to a specific task by training it on a 

smaller, task-specific dataset. Unlike training from scratch, fine-tuning leverages the knowledge acquired from 

large scale corpora and requires fewer resources. There are three main types of LLM fine-tuning methods 

[39], namely, 

 

a) Unsupervised Fine-tuning  

This method eliminates the need for labeled data. The LLM instead processes a large collection of unlabeled 

text, enhancing its comprehension of language. While beneficial for new domains like law and medicine, it is 

less accurate for classification and summarization tasks.  

 

b) Supervised Fine-Tuning (SFT) 

The LLM is trained with task specific labeled data during SFT. For instance, fine-tuning an LLM for text 

classification involves a dataset of text snippets paired with class label. Although this approach is effective, it 

demands a large amount of labeled data, making it both expensive and time consuming.  

 

c) Prompt Engineering (Instruction Fine-Tuning) 

The LLM is directly provided with natural language instructions, making it valuable for developing specialized 

assistants. You can directly prompt the LLM with the guidelines on how you want to receive the outputs. This 

method minimizes the need for large datasets but its effectiveness depends entirely on the quality of the 

prompts.  

 

Of the three methods listed above, we will be using supervised fine-tuning (SFT) to fine-tune our model.  
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FIGURE 6.1 - TRADITIONAL AND PARAMETER EFFICIENT FINE-TUNING [40] 

 

Of the three methods listed above, we will be using supervised fine-tuning (SFT) to fine-tune our model. In 

traditional fine-tuning we update every weight and bias of every parameter, which makes it computationally 

expensive [41]. Instead, we can use a process called parameter-efficient fine tuning, in which only a subset of 

the parameters are updated. We will look into all of this in subsequent sections.  

 

6.2 Prerequisites to Fine-Tuning 

 

The two main steps that you should carefully consider before fine-tuning are selecting the dataset and choosing 

the right pre-trained model. Even before that, you must have a solid understanding of the task you plan to 

train your model on.  

 

a) Task Selection  

Transformer models have been successfully applied to various NLP tasks, including text classification, named 

entity recognition (NER), text summarization, translation, etc. In this study, we will be performing sentiment 

analysis which involves classifying a given piece of text as positive or negative sentiment. Sentiment analysis is 

used across various industries to extract insights from textual data.  
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Two of my favorite examples are financial market analysis and political analysis/opinion mining. Investors 

can use sentiment analysis to analyze financial news and social media discussions. Thus, stock movement can 

be predicted based on public sentiment toward a company. Similarly, discussions on online social platforms 

can also be used for understanding voter sentiment toward a party or a candidate. Other applications include 

customer service automation, customer feedback and reviews and social media monitoring.  

 

b) Dataset 

We have selected the Stanford Sentiment Treebank (SST-2) dataset which is a widely used benchmark for 

evaluating sentiment classification models. It contains 67,349 phrases extracted from movie reviews, with each 

phrase labeled as either positive or negative. A well-structured dataset is critical for fine-tuning LLMs 

effectively. We will preprocess the SST-2 dataset by tokenizing it with the BERT tokenizer and 

padding/truncating the sequences to ensure correct input lengths. Proper data preprocessing ensures that the 

model receives structured input, improving training efficiency and generalization performance. 

 

c) Model 

For our task, we will be selecting the BERT-base-uncased model. BERT (Bidirectional Encoder 

Representations from Transformers) is a 12 layer transformer model with 110 million parameters [42].  

 

FIGURE 6.2 - BERT VS GPT MODEL ARCHITECTURE [42] 

As opposed to GPT, BERT transformer uses bidirectional self-attention [42]. GPT uses constrained self-

attention meaning every token can only a attend to context on its left, whereas, tokens in BERT can attend 
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context in both left and right directions. By fine-tuning BERT on SST-2, we will attempt to increase the 

performance of BERT on sentiment analysis task.   

 

6.3 Parameter Efficient Fine-Tuning : LoRA and Quantization 

 

Traditional fine-tuning is computationally expensive, requiring significant memory and processing power. 

Parameter Efficient Fine-Tuning (PEFT) techniques aim to reduce this cost by modifying only a small subset 

of model parameters while keeping majority of the pre-trained weights frozen. This allows the model to adapt 

to new tasks efficiently, without needing to update all the parameters.                            

 

PEFT methods introduce lightweight trainable components, such as Low-Rank Adaptation (LoRA), to  

achieve comparable performance with far fewer trainable parameters. Additionally, techniques like 

quantization help reduce the model’s memory footprint, enabling deployment on resource constrained 

devices.  

a) Low-Rank Adaptation (LoRA) 

LoRA is a PEFT fine-tuning technique in which we freeze the weights of the pre-trained model and introduce 

trainable rank decomposition matrices in each layer of the transformer architecture of the model [43]. This 

significantly reduces the number of trainable parameters for downstream tasks. By using LoRA, we will only 

be training 50 percent of the models parameters and still achieve a massive increase in performance.  

 

FIGURE 6.10 - LORA (ONLY A AND B IS TRAINED) [43] 

In traditional fine-tuning, we update all the weight matrices (Wq, Wk, Wv) of the transformer model which 

results in high memory usage and computational cost. With LoRA, instead of updating the full weight matrix 
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W, we freeze it, and introduce two small matrices A and B, which capture task specific adaptations. Since A 

and B have low rank structures, the number of trainable parameters is significantly reduced.  

 

b) Quantization 

Quantization is a technique for optimizing transformer models by reducing the precision of numerical 

representations. Standard deep learning models use 32-bit floating point precision, but quantization allows 

for lower precision formats (such as 8 or 4-bit integers). This reduces model size due to the lowering of bit 

precision and also reduces inference times [44]. 

 

In our study, we will use post-training quantization (PTQ) which applies quantization while eliminating the 

need of retraining the entire pre-trained model weights [44, 45]. This approach reduces memory usage and 

accelerates inference while preserving accuracy [45] 

 

 

6.4 The Fine-Tuning Process 

 

In this section, we will fine-tune our model on the previously discussed dataset. The hyperparameters, code, 

training hardware and all of the other important aspects related to the fine-tuning process will be presented 

step by step. Our code implementation includes data preprocessing, model loading, evaluation and training. 

We will use a train-validation split, monitor the loss function, and track accuracy and F1 score during training. 

Let us begin with the first step, which loading the model and dataset.  

 

a) Installing the Required Libraries 

 

The first step is to install the libraries that are required for our task,  

pip install transformers -q 
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pip install bitsandbytes -q 

!pip install datasets -q 

 

The transformers library is required for loading and fine-tuning BERT. The bitsandbytes is used for efficient 

quantization to optimize memory usage and datasets library is used to load the SST-2 dataset, which will be 

used for sentiment analysis.  

 

b) Setting up Quantization 

 

Before loading the model we must first setup quantization if we wish to use a quantized model. 

from transformers import BitsAndBytesConfig 

bnb_config = BitsAndBytesConfig( 

    load_in_4bit=True, 

    bnb_4bit_quant_type="nf8", 

    bnb_4bit_compute_dtype="float16", 

    bnb_4bit_use_double_quant=True, 

) 

 

By enabling load_in_4bit=True , the model’s weights are stored in 4-bit format, making fine-tuning 

feasible on limited hardware. The ‘normal float 8’ of bnb_4bit_quant_type="nf8"  is an advanced 4-

bit format optimized for better stability with deep learning tasks compared to older formats.  

bnb_4bit_compute_dtype="float16", ensures computations are performed in half-precision. 

bnb_4bit_use_double_quant=True applies quantization twice which is useful for limited ram setups. 

This should be set to false if you want to avoid the risk of losing accuracy.  
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c) Loading the Model and Dataset 

 

Now let’s load the model, tokenizer and the dataset,  

from transformers import BertForSequenceClassification 

model = BertForSequenceClassification.from_pretrained("google-bert/bert-

base-uncased", num_labels=2) 

                                                       

                                                      

from transformers import BertTokenizer 

tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") 

 

 

from datasets import load_dataset 

dataset = load_dataset("SetFit/sst2") 

 

We load the pre-trained BERT model for sequence classification with number of labels equal to 2. This 

initialized BERT for binary classification, making it suitable for sentiment analysis where the labels 

correspond to positive and negative sentiments. Note that we are not quantizing the model. For this study, we 

had the required memory to perform fine-tuning on an unquantized BERT. We fine-tuned BERT using 

A100 GPU on google colab pro, therefore quantization was not required.  

 

The appropriate tokenizer for BERT is loaded to convert text into token IDs for processing. The SST-2 

dataset is loaded from HuggingFace which contains text and corresponding labels.  

 

 



 76 

d) Preprocessing the Dataset 

 

The next step is to make the dataset ready for processing, 

def tokenize_function(example): 

    return tokenizer(example["text"], 

                     padding="max_length", 

                     truncation=True, 

                     max_length=128) 

tokenized_dataset = dataset.map(tokenize_function, batched=True) 

 

 

The above function converts the text into tokens. This function applies padding to ensure that all sequences 

have the same length (padding="max_length") and truncates longer sequences to 128 token 

(max_length=128).  The function is then a applied to the dataset using dataset.map  which efficiently 

transforms the text into tokenized inputs suitable for model training.  

 

e) Configuring LoRA for PEFT 

 

We will now define the settings for LoRA and wrap our model with LoRA layers.  

from peft import get_peft_model 

from peft import LoraConfig, TaskType 

 

peft_config = LoraConfig(task_type=TaskType.SEQ_CLS, 

                         inference_mode=False, 

                         r=16, lora_alpha=32, 

                         lora_dropout=0.1) 
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lora_model = get_peft_model(model, peft_config) 

lora_model.print_trainable_parameters() 

 

 

LoRA is configured using LoraConfig , where TaskType.SEQ_CLS specifies that the task is sequence 

classification. The rank r=16 controls the size of the low rank decompostion matrices. A smaller ‘r’ results 

in faster training but can harm the accuracy. A larger ‘r’ is able to extract more information leading to a better 

accuracy. The lora_alpha=32 scales the adapted weights to ensure effective learning. A dropout rate of 

lora_dropout=0.1 is used to prevent overfitting. Finally, we wrap our model with LoRA using 

get_peft_model(model, peft_config). After wrapping, this is the number of available parameters 

for training, 

trainable params: 591,362 || all params: 110,075,140 || trainable%: 0.5372 

 

f)  Calculating Metrics : Accuracy and F1 Score  

 

We will define a function compute metrics which calculate the accuracy and F1 score.  

from sklearn.metrics import accuracy_score, f1_score 

import numpy as np 

 

def compute_metrics(eval_pred): 

 

    logits, labels = eval_pred 

 

    predictions = np.argmax(logits, axis=-1) 

 

    accuracy = accuracy_score(labels, predictions) 
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    f1 = f1_score(labels, predictions, average="macro") 

 

    return {"accuracy": accuracy, "f1": f1} 

 

This function receives predictions from model and extracts the logits and labels logits, labels = 

eval_pred. Using np.argmax(logits, axis=-1) it selects the class with the highest probability as 

the predicted label. The accuracy is calculated using accuracy = accuracy_score(labels, 

predictions) , while the F1 score is calculated using  f1 = f1_score(labels, predictions, 

average="macro"). These metrics will provide insights on how well the model is performing on the 

sentiment analysis task.  

g) Defining Training Arguments 

 

To fine-tune effectively, we define training arguments which specify key training parameters.  

from transformers import TrainingArguments, Trainer 

 

training_args = TrainingArguments( 

    output_dir="sonu/bert-base-uncased/peft-lora", 

    learning_rate=3e-4, 

    per_device_train_batch_size=64, 

    per_device_eval_batch_size=64, 

    num_train_epochs=5, 

    weight_decay=0.05, 

    eval_strategy="steps", 

    eval_steps=25, 

    save_strategy="steps", 

    load_best_model_at_end=True, 
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    logging_dir="./logs", 

    logging_steps=10, 

    optim="paged_adamw_32bit", 

    warmup_steps=25, 

    lr_scheduler_type="cosine", 

    report_to="wandb", 

) 

 

Majority of the parameters here are selected on trial-and-error basis. There is no right or wrong value, and 

the correct values are established based on how the model behaves during training. A 

learning_rate=3e-4 was chosen as it provided the best accuracy and decently short training time. A 

smaller learning rate ensures gradual and stable learning but training can be slower. A larger learning rate 

leads to larger weight updates per step but can cause instability and prevent model from converging.  

 

A larger batch size requires more GPU memory but is faster. A smaller batch size is preferred when less 

memory is available but the training is considerably slower. I used a large batch size as I had access to a GPU. 

Model is trained for 5 epochs and a weight decay of 0.5 is chosen to prevent overfitting. Evaluation is set to 

25 steps, meaning the models performance is evaluated every 25 steps. The learning rate does not suddenly 

increase to the specified value. It gradually increases from 0 to 3e-4 in the first 25 steps. After that the learning 

rate decays following a cosine curve. The AdamW optimizer was used which uses adaptive learning rates and 

weight decay to prevent overfitting. This optimizer works well with models like BERT. An optimizer is an 

algorithm that adjusts the model’s parameters (weights and biases) during training to minimize the loss 

function. It does this by calculating gradients (how much each parameter affects the loss) and updating the 

parameters in a way that reduces the loss over time. The optimizer adjusts the weight in the direction that 

reduces the loss using a learning rate. Finally, we report the metrics to WandB for visualization.  

 

h) Setting up Trainer and Training the model 

 

We setup trainer  
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trainer = Trainer( 

    model=lora_model, 

    args=training_args, 

    train_dataset=tokenized_dataset["train"], 

    eval_dataset=tokenized_dataset["test"], 

    tokenizer=tokenizer, 

    compute_metrics=compute_metrics, 

) 

 

trainer.train() 

 

trainer.evaluate() 

 

 

Using Trainer we load the model, tokenizer, training arguments, train and test datasets and the compute 

metrics function. Finally, using trainer.train() we train the model and using trainer.evaluate() 

we evaluate its performance after training.  

 

 

6.5 Fine-Tuning Results 

 

In this section we will examine if our model was able to converge and how significantly we were able 

to increase its performance on the task of sentiment analysis. Let us start by looking at the 

performance of pretrained BERT before fine tuning on the SST-2 dataset.  
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FIGURE 11 - BERT PRETRAINED PERFORMANCE 

 

As it can be seen, the performance is incredibly low with the model getting majority of the predictions 

wrong. If we wanted to use it for sentiment analysis, this model would need fine-tuning. 

 

Therefore, using the settings we discussed in the previous section, we will train the model for 5 epochs. The 

model is evaluated every 25 steps and the training loss, validation loss, accuracy and F1 score over 5 epochs 

can be seen in the following figure.   

 

FIGURE 12 - BERT TRAINING FOR 5 EPOCHS 
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We start off with a training and validation loss of almost 0.7. Both of the losses show gradual and consistent 

drop over the 5 epochs or 525 steps. After around 250 steps, we see a training loss of 0.21 and validation loss 

of 0.23. After this point we don’t see a significant drop in either losses. The accuracy and f1 scores have also 

reached 0.9 by this point. We still continue to check is the losses can drop further. As validation loss is not 

increasing, which means there is no risk of over fitting and hence, we continue this process for 275 more 

steps. The sweet-point lies between 375 and 400 steps where the training loss has dropped to 0.16 and the 

accuracy has reached 0.91. By the end of our training we see significant improvement is both the losses and 

the metrics.  

 

 

 

FIGURE 13 - BERT FINE-TUNED PERFORMANCE 

 

 

Finally, after 5 epochs, evaluating the model gave these results. We are able to improve both the accuracy 

and f1 scores significantly. Accuracy went up from 0.51 to 0.91 and similarly, f1 score shot up from 0.39 to 

0.91. This shows a 78% increase in the accuracy and 133% increase in the f1 score. Therefore, it is safe to say 

that the fine-tuning process turned out to be a huge success. We can also visualize these improvements with 

the following graphs which were acquired from Wandb. 
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FIGURE 14 - TRAINING LOSS 

 

It can be clearly seen that the loss decreases consistently over 5 epochs or 525 steps. This shows that the 

model was able to converge. The loss initially decreases sharply and from around step 150, follows a slow 

decline rate. Lowest value of 0.16 is reached between 400 and 450 steps.   

 

 

FIGURE 15 - VALIDATION LOSS 
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The validation loss also consistently decreases overtime. It also does not, at any point show a considerable 

increase. Through this we can conclude that through our model training strategy, we were successful in 

avoiding overfitting.  

 

FIGURE 16 - ACCURACY 

 

The accuracy showed a sharp rise in the first 100 steps and continued to increase slowly thereafter. A final 

accuracy of 0.91 was achieved by the model which is also reflected in the graph.   

 

FIGURE 17 - F1 SCORE 
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The F1 score also mimicked the behavior of accuracy and showed quick rise in the first 100 steps. The growth 

slowed down after that and the highest F1 score of 0.91 was achieved by the end of the training.  

 

 

FIGURE 18 - LEARNING RATE 

 

The learning rate followed a path according to the settings in our training arguments. Initially, for the first 25 

steps, learning rate increased from 0 to the specified learning rate, as we had set warmup_steps=25. 

Thereafter, the learning rate followed a decay in the form of a cosine wave. This was set by 

lr_scheduler_type=“cosine”.  

 

6.6 Performance Comparison with Larger Models 

 

In this section, we will compare the performance of our fine-tuned model with other well-known industry 

scale models. To make a direct comparison of the performance, we will evaluate these models on the same 

dataset and try to compute the accuracy and f1 scores.  
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The models that I compared our fine-tuned model with are Mistral-7B-v0.3, GPT-2-large and Falcon-7B-

instruct. All of these models are 7 to 60 times larger than our model, therefore a considerably higher 

performance is expected. The accuracy and f1 scores of the models after evaluation are in the graph below.  

 

 

FIGURE 19 - BERT FINE-TUNED VS LARGER MODELS 

 

 

It can be clearly seen that none of the models were able to outperform our model despite their larger sizes. 

Both Mistral and Falcon were able to achieve accuracies of only 50% meaning half of their predictions were 

incorrect. The f1 scores were below 0.5 for both the models.  
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FIGURE 20 - MISTRAL PERFORMANCE ON SST-2 

 

 

FIGURE 21 – FALCON PERFORMANCE ON SST-2 

 

 

FIGURE 22 – GPT-2 (LARGE) PERFORMANCE ON SST-2 

 

Of the 3 models that we evaluated, only GPT-2 (large) was able to provide a somewhat satisfactory result. 

Both the accuracy and f1 scores of this model were over 0.6 but still considerably lower than our model.  

I was not ready to stop here and was motivated to keep searching for larger models who our model is capable 

of competing with. Based on these findings, I thought it would be appropriate to evaluate large GPT models 

which are industry scale models used by millions of users on a daily basis.  
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The larger GPT models, however, are closed source. Hence, to evaluate them, we have to make api calls to 

the OpenAI API. Using a python script, we send sentences to OpenAI and ask the model to classify the 

sentence as positive or negative. We then store these predictions in an empty list and at the end calculate the 

accuracy and f1 scores. The script that was used to evalute the performance is as follows,  

import openai 

import datasets 

import time 

from sklearn.metrics import accuracy_score, f1_score 

 

# ✅ Load SST-2 dataset from Hugging Face 

sst2 = datasets.load_dataset("SetFit/sst2", split= "test") 

 

# ✅ Initialize OpenAI API 

client = openai.OpenAI(api_key="api_key") 

 

We import openai to interact with OpenAI’s API for text classification.  time is used for adding delays to 

avoid hitting API rate limits. We then load the dataset and create and OpenAI API client using our API key.  

# ✅ Define a function to classify sentiment 

def classify_sentiment(sentence, model="gpt-4o-mini"): 

    """Sends a sentence to GPT-4o-mini (or GPT-3.5) and returns the 

predicted sentiment.""" 

    try: 

        response = client.chat.completions.create( 

            model=model, 

            messages=[ 

                {"role": "system", "content": "You are a helpful assistant 

trained to classify sentiment."}, 

                {"role": "user", "content": f"Classify the sentiment of 

the following sentence as either 'positive' or 'negative':\n\nSentence: 

'{sentence}'\nSentiment:"} 

            ], 

            max_tokens=10, 

            temperature=0  # Deterministic output 

        ) 

        prediction = response.choices[0].message.content.strip().lower() 

        return 1 if "positive" in prediction else 0  # Map text response 

to label 

    except Exception as e: 

        print(f"Error: {e}") 

        return None  # Handle API failures gracefully 
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We define classify_sentiment function to send a sentence to OpenAI’s GPT model and extract 

response.  

We first create a chat completion request using client.chat.completions.create method. First 

message, with the role “system”, sets the assistant’s behaviour by instructing to classify the sentiment. The 

second message, with the role “user”, provides the input sentence and asks the model to classify it as either 

“positive” or “negative”. max_tokens=10 ensures the model’s response remains short. The temperature 

is set to zero to make the model give deterministic outputs. 

response.choices[0].message.content retrives the text output from the first response choice. 

The function then returns 1 if the response contains the word “positive” and 0 if “negative”.  

The except Exception as e block is triggered if any error occurs during API request. The error details 

are displayed using print(f"Error: {e}") and instead of crashing the program, it gracefully returns 

“None” to indicate that the sentiment classification of that sentence was unsuccessful.  

# Evaluate the model on the SST-2 dataset 

true_labels = [] 

predicted_labels = [] 

 

for i, example in enumerate(sst2): 

    sentence = example["text"] 

    true_label = example["label"]  # 1 = Positive, 0 = Negative 

 

    prediction = classify_sentiment(sentence, model="gpt-4o-mini") 

 

    if prediction is not None: 

        true_labels.append(true_label) 

        predicted_labels.append(prediction) 

 

    # Print progress every 10 samples 

    if (i + 1) % 10 == 0: 

        print(f"Processed {i+1}/{len(sst2)} sentences...") 

 

    # Avoid hitting OpenAI rate limits (adjust as needed) 

    time.sleep(0.5) 
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We store the ground truth labels and model predictions, and loop through each sentence in the dataset using 

for i, example in enumerate(sst2). We then extract sentence and label, call the function and 

add the true and predicted labels to their respective list if the prediction is valid. The progress is printed every 

10 sentences and a delay of 0.5 seconds is added between every request so we don’t hit OpenAI’s rate limits.  

# Compute Accuracy and F1-score 

accuracy = accuracy_score(true_labels, predicted_labels) 

f1 = f1_score(true_labels, predicted_labels) 

 

print("\n GPT-4o-mini Sentiment Analysis Results on SST-2:") 

print(f" Accuracy: {accuracy:.4f}") 

print(f" F1 Score: {f1:.4f}") 

 

The accuracy and f1 score are then calculated and printed.  I compared the performance of our model with 

GPT-3.5 and GPT-4o-mini. The results are as follows,  

 

FIGURE 23 - BERT FINE-TUNED VS GPT-4O-MINI & GPT-3.5 
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Finally, the GPT models were able to provide a comparable performance to our model. GPT-3.5 fell just 

short whereas GPT-4o-mini was able to outperform us by a tiny margin.  

 

 

FIGURE 24 - GPT-4O-MINI PERFORMANCE 

 

 

FIGURE 25 - GPT-3.5 PERFORMANCE 

 

In figure 18, the model is incorrectly named as GPT-4, while it is GPT-3.5. GPT 3.5 which is over 1500 times 

bigger than our model achieved an accuracy of 0.89 and f1 score of 0.88. Although the scores are lower than 

our model, they are pretty impressive. GPT-4o-mini was able to do better than us with accuracy of 0.93 and 

f1 score of 0.92.  

 

While we compare the performances, we must not forget that the models that we are comparing our model 

with are industry scale models used by people around the world on a daily basis. They are trained on world-

class data with millions of dollars being spent on the training. The fact that our model was able to compete 

with them is a huge achievement considering the limited resources that were available to us for fine-tuning. 

Through the chapter, not only were we able to obtain theoretical knowledge about fine-tuning but were also 

able to implement this knowledge to make a model perform the task of sentiment analysis at a world-class 

level of performance. This model is now freely available for use on HuggingFace at Sonu313131/peft-lora-

sst. Through this study, we were able to contribute to the field of natural language processing (NLP) and 

machine learning (ML) by providing a model that despite its smaller size, produces high tier industry standard 

performance on the task of sentiment analysis. 
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CONCLUSION 

 

The rapid advancement of Large Language Models (LLMs) has revolutionized the field of Natural Language 

Processing (NLP), enabling powerful applications across industries. However, the reliance on massive, 

computationally expensive models poses significant challenges in terms of accessibility, cost and efficiency. 

This thesis has systematically explored the key components of LLMs – tokenization, embeddings, and fine-

tuning. 

A crucial aspect of this result was the in-depth analysis of tokenization and embeddings, the foundational 

blocks of modern LLMs. We examined various tokenization techniques including Byte Pair Encoding 

(BPE), WordPiece, and Unigram, and implemented these algorithms in code to provide practical insights 

into their workings. Similarly, embeddings such as token, contextual, multimodal, and positional were also 

thoroughly explored. The code implementation demonstrated their practical use, offering a comprehensive 

understanding of how these techniques power modern LLMs. 

Through rigorous experimentations, we have shown that a smaller, properly fine-tuned LLM can match the 

performance of much larger industry-scale models. By leveraging fine-tuning techniques such as LoRA and 

quantization, we have been able to significantly enhance the capabilities of a compact model, making it a 

viable alternative to heavyweight models for sentiment analysis. This achievement is more than just a 

technical optimization – it is a paradigm shift in how we approach model deployment, proving size is not 

the ultimate determinant of effectiveness. 

The implications of this work are profound. A well-tuned smaller model not only reduces inference costs 

but also democratizes AI by enabling high-performance NLP applications on local machines, without the 

need for extensive computational infrastructure. This approach opens the door for more sustainable and 

cost-effective AI solutions. 

Looking ahead, the future of AI lies in striking the perfect balance between efficiency and power. As fine-

tuning techniques continue to evolve, the gap between smaller and larger models will continue to shrink, 

making AI more accessible than ever before. This thesis serves as a testament to the potential of fine tuning 

– not just as a means to improve models, but as a revolutionary approach to redefining the scale at which AI 

operates. 
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