UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
MACROAREA DI INGEGNERIA

TOR VERGATA

UNIVERSITA DEGLI STUDI DI ROMA

CORSO DI STUDIO IN

Mechatronics Engineering

TESI DI LAUREA IN
Electronics of IOT and Embedded Systems

TITOLO
Analysis of Large Language Models — Tokenization, Embedding and Fine
Tuning.
Relatore: Laureando:
Prof. Giancarlo Cardarilli Antariksh Milind

Correlatore:
Prof. Sergio Spano
Anno Accademico 2023/24

ACKNOWLEDGEMENTS

I would like to dedicate my work to the most beloved people in my life, my parents, Jyoti and Milind
Shreshthi. No words of gratitude can truly do justice to their love, care, support, sacrifice, and

blessings - I owe everything to them. I AM BECAUSE THEY ARE!

I would also like to thank my professors, Prof. Giancarlo Cardarilli and Prof. Sergio Spano for their

valuable guidance and support throughout my thesis work. It has been a pleasure working with them.

To my dear sister, Saachi, who loves me unconditionally - I love you to the moon and back!

II

ABSTRACT

Large Language Models (LLLMs) are a class of transformer-based artificial mtelligence models
designed to process and generate human-like text. With the rise of models like GPT, BERT, and
their varants, LLLMs have significantly transformed various fields, particularly natural language
processing (NLP), and have become integral to many applications of machine learning and artificial
mtelligence. These models are pivotal in tasks such as sentiment analysis, translation, text
summarization, and more, reshaping how we nteract with technology in both personal and

professional contexts.

This thesis explores the foundational concepts and practical implementations of LLLMs, focusing on
three key components: tokenization, embeddings, and fine-tuning. It begins with an overview of the
transformer model architecture and its various applications. The thesis then delves into the processes
and types of tokenization and embeddings, followed by the mimplementation of tokenization and
embedding algorithms in code. The final chapter includes fine-tuning a smaller LLLM, improving its
performance to match that of an industry scale LLM. The chapter demonstrates how an effectively
fine-tuned smaller model can replace larger models like GPT for various NLP tasks, while

maintaining high performance and reducing operational costs.

I

Table of Contents

1. THE TRANSFORMER — MODEL OVERVIEW AND APPLICATIONS........cccottttmmmeeiiiiiiinnnnessissiimmmassssssssssmsssssssssssssnenns 1
INTRODUCTION ..uuiiiiiiiunieeeeeetittiie e et ettt aa e e e et et bbb e s e et e bbb e e s e e e e e e baa s e e e e e aabaa e s e e e e e aabaa s s e e e e e b abbaa s s e eeseansbaaasses 1
1.1 TRANSFORMER ARCHITECTURE c.cetettteteeeeeteeeeeeeeeeeeeeteeeeeeeeeeeeseeseeeaeeeaaeseeee s s saa s s e e s e s e e e e e e e e e s e e ae e e e e e e e e e e ss s eeesaesesenennnnnnnnnns 1
1. 2 TOKENIZATION = eeeeeieeeeteteeteeeeeteteeeeeetetetet ettt e ettt e e e et e e et e et e e e e e e e e e e e e et e s e e e et e e e e e e e e e e ee e eee s aeeeennnnnnnnnnnnns 3
1.3 EMIBEDDINGS —..eeeeteteieeeeeteteeeeeeeeteeeeeeteeeeeeae e ettt et ae e e e e e et et e e e e e a4 e e e e et e e e e e e e e e e et ettt ee et aeennennnnnnrnnrnes 5
1.4 TRANSFORMER APPLICATIONS = +...tteutteeuteeenneeenuteessee ettt esmteesateesseeeaseeeamseesabeeebeeeabeeessseesabeeaabeeesmneesareesareeennaeennnees 7

2. EMBEDDINGS — EXPLANATION AND TYPESccouuuummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmssns 10
INTRODUCTION —..tiiiietiiiitiitttte e e e ibaa et et e e e s bbb s et e e e e s b b b s et e e e e s e bbb s e e e e e e s s b bbb s e e e e e s s s bbb s s e e e e e s s sabbbaaeeseesssssabbaneeas 10
2.1 TOKEN EMBEDDINGS = ..eeiiiiiiiiiriiieee ittt e e e e et e e e e s s bbb e st e e e e s s b b b s e e e e e s s bbb b s e e e e e e s s s bbb b s e e e e e s s sabbbaaeeeeeenss 10
2.2 POSITIONAL EMBEDDINGS —....uuvvtitieetiiiiiiiititeeeeeeiiitee e e e e s s saaaa st e e e s s s s bbb s et e e e e s s abb e st e e e e s s s nbbaaeeeeessssanbaaeeeeeesas 10

a) Absolute Sinusoidal Positional EMBDEAAINGS —...........ccueeeeeecuveeeieeeeeeeciiieieee e eeeccitttaee e e e esssistaeaaeeesessssesees 11
b) Absolute Learned Positional EMBDEAMINGS —..........c....uveeeeeeeeeeiiiiiiiee e eeesccteteee e e eestciaaaaaaaaeeessisssaaaaaeesssnnes 14
) Relative PoStional EMBDEAUINGS =vveveeeeeeeeiieeeieee e ettt e e e ee ettt ee e e e e e ettt aaa e e e e e sssasaaaaaaeeessssssssees 15
d) ROPE Rotary POSitional EMBDEAUINGS -.........cccceeeeeueeeiieeeeeeiiiieeeee e e eeesctttaea e e eestistaaaaaaeesssssssaaaaeeeesssssasees 19
2.3 CONTEXTUAL EMBEDDINGS — ..uuuuuuuuuuuununiuiiniiiiiniiiiiisii s 22
2.4 MULTIMODAL EMBEDDINGS = ..uuuuuuuuuuunnnnnnnnnininnnisasiiiiaiaiiaissa s s 23

3. TOKENIZATION — PROCESS AND TYPESccouuuuuummmmmmnnnnnnnnnnmmmnnmnmmmsmmsmsssns 25
INTRODUCTION —.ttttiiitittttttttttetteeeeeeeeetee ettt ettt et ettt e e e e e e e e e e e e e e e e e s e s e e s e e e 4444444444484 e e e e e e e e e e e e e e s e e e e e e e e e e e s aaaaaabaaes 25
3.1 TYPES OF TOKENIZATION L.uuuuuuiinniniiniiiiiiiii s 25

Q) WOId — LEVEI TOKENUZATION.eevveeeeeeiieeiiee e e eeeeeetee e e e ettt e e e e e e sttt e e e e e eetssaaaaeeeeessassssaaaaeeesssassssseeas 25
b) Character — LeVel TOKENIZATIONveeeeeeeeeeeiiieeeeeeeeeetctetee e e e e e e ttttae e e e e et tasaaaae e e e e ssasssaeaaseeesssasssseeens 26
C) SUBWOIA — LEVEI TOKENIZATIONoccccoeeviveeieeeeeeeeetee e e eeette e e e e ettt e e e e e e ettt a e e e e e e s sasssaaaaaeeeessasssseeens 27
3.2 ALGORTIHMS OF TOKENIZATION — ..uuuuuuiuiunnuiiiiiiiiiii s 28
Q) BYte POl ENCOAING (BPE) ...t e aaaaeaaaaaeeas 28
D) WOIAPIECE ...ttt ettt e aeeaeeaaaaaaaaaaaaaaeas 31
Loy I8 L e [I ¢ D USSR 34
) SENLENCEPICCE ...t e aeeaeaeaeaaaaaaaaeas 38

4. EXPLANATION OF BYTE PAIR ENCODING IMPLEMENTATION IN MATLAB.......ccccccciiiiitiiinniniiinineeneesssssnesenaeees 39
o = o o 6o o PP PP PPTPPPT 39
L 00 o] 17N 7. T 43
4.3 EXPERIMENTAL RESULTS.ccetiiiiiiiiiiiiiiei ettt e 52

5. EXPLANATION OF POSITIONAL ENCODING IMPLEMENTATION IN MATLAB........ccccvcvuttttiniisssnnnnneennnsssssnssseeses 56

5.1 POSITIONAL EMBEDDING CODE ...ttt s 56
5.2 CODE EXPLANATION ... s 59
5.3 EXPERIMENTAL RESULTS . . s 64
6. FINE TUNING A SMALL LLM TO REPLACE AN INDUSTRY STANDARD LLMccccuuuuuummmmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnes 68
INTRODUCTION ...iiiiiiiiniiie ettt it e e ettt taaae e e e e ettt aaa e s et e taaba s s e e e et e e baa e e e e e e aabaa e e s e e e e e e bba e s e e e e e e aabaa s s e eeseanabaaasses 68
6.1 FINE-TUNING: CONCEPT AND TYPES..ciiiiiiuuiiiiiieeiiiiiiiiitiee e s sttt et e e e s ibb e st e e e e e s bbb b e e e e e e s s bbb s e e e e e e s s s bbb aaeeeeeesas 69
Q) UNSUPEIVISEA FIN@-TUNINGvvveveeeeeeeiieiiiee e e eeeeeatt e e e e e ettt a e e e e ettt ae e e e e easssaaaaaeeeessasssseaasseesssnsssenees 69

b) SUPEIVISEA FINE@-TUNING (SFT) c..uvvveeeieeeeeeeeeeeee e e e eee ettt e e e e e ettt e e e e ee ettt taaeesessssssaaaaaesessssssssaaaseessssses 69

c) Prompt Engineering (INStruction FINE@-TUNING)cceeeeeeeeiueeieieeeeeeecisetteeeeeestetttaaaeeeesssssstesasseesssssseeeens 69
6.2 PREREQUISITES TO FINE-TUNING ..ccttitiiiiiiiitiiitee ettt e e st e e a s e e e s abb b s e e e e e e s s bbb s s e e e e e e s s sbbbaaeeeeeseas 70
Lo I e K QR Y=1 =T 1 o] SR 70

LoD o [o K =4 USSRt 71

Loy I 17 (o T =] U SU 71
6.3 PARAMETER EFFICIENT FINE-TUNING : LORA AND QUANTIZATION ...euvviiiieiiiiiiiiirieeeeeiiinireeeeee e ssirree e e e e s s ssinrnneesees s 72
Q) LOW-RANK AQGDEALION (LORA)...ceeeee et eeeeettte e e eet ettt e e e e ettt e e e e e e ettt aaaeeesessssssaaaaaseesssasssseeens 72

D) QUONTIZATION ... eeete et e et e e et e e e et e e ettt e e ettt e e st e e e sasstea e assaaessssaassnsaaessansaassnnnsenssnnnseaens 73
6.4 THE FINE-TUNING PROCESS ...uuuuiiiiiiiiiiiii s 73
0) INStalling the REQUIIEd LIDIQIIESeeveeeeeeeeiieieeeeeeeeeettee e e e e e ettta e e e e e e e taaaa e e e e e ssssssaaaaaeeeesssssasees 73

D) SELEING UP QUANTIZATION.c..vveeeeeiieeeeie e sete e eet e e et e e et e e sttt e e s teaesasstaessasaaassassaaasssnseaasanseasnsnsseanns 74

C) Loading the Model QNG DALASELeeeeeeeeeeiiieiieeeeeeesetteee e e e ettt e e e e e e e ttsaaaae e e e e ssssssaeaaeseessssssssees 75

d) PreproCessing the DATASEL.............cccccuuveeieeeeeeeetcieeeeee e e eestetetee e e e e e sttt aaaeaaeeeesssaaaaeeeeessssssssaaeseesssasssssees 76

€) CONFIGUIING LORA FOI PEFTvvveveeee ettt eeeetette e e e ettt e e e e ettt e e e e e e e e tassaaaaeeeeessassssaaaaseesssassssseeas 76

f) Calculating Metrics : ACCUIACY QNG F1 SCOTEuueeeeeeeeireeieeeeeeetiieeeeeeeeesttiaseaaaeaeeeesssssaesaseeessisssssaesseeaas 77
g) Defining TraiNiNG AFQUIMENTS...........ceeeeeeeieeeeeeeeeeeetcitteeee e e eeetetsseeae e e e e e ttsasaaaaeeeeessssssaaaaseeesssssssssseseassssses 78

h) Setting up Trainer and Training the MOdElcccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 79
6.5 FINE-TUNING RESULTS 1.ttt s 80
6.6 PERFORMANCE COMPARISON WITH LARGER IMIODELS.....uuuiiiiiiiiiii s 85
CONCLUSIONcceeieeiiiiiiiieetieiiiitiieeseaeiiettteessaessetetttessaessisestteesssssssssstteesssssssssssteesssssssssssttesssssssssssseesnsssssssssssenns 92

I. THE TRANSFORMER - MODEL OVERVIEW AND
APPLICATIONS

Introduction

Natural language processing mvolves algorithms that help us comprehend, manipulate and produce human
language. For such natural language tasks, large language models demonstrate exceptional performance and
flexibility owing to the knowledge they learn in the pre-traming. Large language models or “LLLMs” are
neural networks that utilize the transformer architecture. This architecture will be further studied as the

chapter progresses.

1.1 Transformer architecture

The transformer 1s the standard architecture for building large language models. It includes an encoder which
takes in the input sequence and passes it on to the decoder through its feedforward network. The input
sequence is first tokenized using a tokenizer followed by the conversion of these tokens into vectors using
embeddings [1]. The final input embedding is the sum of token embedding and positional embedding. The

various parts of the transformer model can be seen in the figure below.

The transformer feeds these input embeddings into a layer known as the multi-head attention. This layer 1s
made up of multiple self-attention layers. The process of assigning weights (parameters) to every word of the
mput relative to every other word is carried out in the self-attention layer. This reveals the relevance of the
word in the current context [2]. The parameters of every self-attention layer are based on different factors,
such as, people’s relationship, performed activities, words that rhyme, etc. Depending on the factors
considered, the self-attention layers are able to establish which words in the mmput sequence have a closer
relationship to one another. For example, in the sentence “The cat was sleeping”, the weight between “The’

and ‘cat’ will have more importance, since the article “The’ is referring to the noun ‘cat’ and not ‘was’.

Output
Probabilities

Add & Norm

Feed
Forward

| Add & Norm IT:

Multi-Head
Feed Attention
Forward

) Nx
N Add & Norm_Je=

—>| Add & Norm

r—>| Add & Norm |

Masked
Multi-Head Multi-Head
Attention Attention
At At
] J \. —)
Positional Positional
Encod ¢ & :
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

FIGURE 1.1 - TRANSFORMER ARCHITECTURE [1]

The feed forward part predicts the next word by trying to assign a score for each word. The weights from the
previous step are taken as input and processed. Based on the training data, it tries to predict what the next
word would be (it goes through all words in its vocabulary). Let’s say the model is trying to predict the next
word 1n the sentence “The Kangaroo...”. It would ideally assign a very high score to jumped’, maybe a
medium score to ‘slept’, and definitely a low score to ‘swam’. The output of this 1s scores (logits) and not

probabilities.

These scores are then converted into probabilities using the Softmax layer. A mathematical function ‘softmax’
1s used for the conversion such that all of the probabilities add up to 1. Eventually, the word with the highest
probability 1s chosen as the next word. The subsequent sections will look into tokenization and embedding

m more detail.

1. 2 Tokenization -

In LLMs, tokens are not words but a smaller unit, such as, a character or a part of a word, or even an entire
phrase. The size of a token depends entirely on the algorithm used. Since the transformer cannot read words
and sentences, they must be first converted into tokens. There 1s a de-tokenization step at the output of a

transformer so that we can interpret the output produced.

The process of tokenization first involves establishing the vocabulary (pre-training). Large text data 1s gathered
from which the model learns and after applying preliminary tokenization methods, the text is split into words,
subwords and characters. To generate a set of tokens, a tokenization algorithm such as Byte Pair Encoding
(BPE), WordPiece or SentencePiece 1s used. The algorithm is run and a set of subword tokens or characters
1s created. Each such token in the established vocabulary is assigned an integer ID. During real time
processing, the text is converted into tokens based on the vocabulary and the tokens are mapped to its

respective ID.

The cat was sleeping on the table. iENcatiiaENsTeepingRonihetablel

Cat
Cat CAT
CAT cat
cat
791, 8415, 574, 21811, 389, 279, 2007, 382, 2789
p 9, 198, 29296, 198, 8415
Token count Price per prompt
13 $0.00039

FIGURE 1.2A - TOKENIZATION (GPT-4) [3]

In the above example, gpt-4’s tokenization method (BPE) is demonstrated. Observe how each word 1s
assigned a different token. Also, tokenization is case sensitive. The word cat, depending on where it appears
n the sentence, whether it has a capital C, or whether all the letters of the word are capital, it has been assigned

a unique token.

The Byte Pair Encoding method is the most widely used tokenization method in the transformer models.
This method starts off by assigning each character a single token, followed by merging the most frequently
appearing adjacent pairs with a two-character long token and so on. In the following example, the byte pair
“aa” occurs more than once and hence we can replace it with a byte that is not used in the data (“Z”). We
then replace the pair “ab” with “Y”. Now the two new bytes are also forming a pair and are appearing twice,

and hence, they can be replaced with a new byte “X”. This 1s known as recursive byte pair encoding.

ccdbecdbcea

MdbMdbca
M=cc

NbNbca
N=Md
M=cc

XXca

X=Nb
N=Md
M=cc

FIGURE 1.2B - BYTE PAIR ENCODING

The data cannot be compressed further since no pair of bytes are occurring more than once. In order to

decompress the data, we can the replacements can be performed in reverse order.

1.3 Embeddings -

The subsequent step after tokenization is token embedding. Token embeddings is a high dimensional space
where the tokens from the previous step are mapped to a unique position called a vector. Not just text, but
also objects like 1mages and audio can be represented using embeddings. Such objects are translated to a
mathematical form depending upon the category they belong to and the factors of traits that they may or may
not have. Embeddings are used to find similarities between objects and a machine learning model can find a

similar image or a document using embeddings. For example, look at following image which 1s representation

of a two-dimensional space.

FIGURE 1.3A - EMBEDDING (2-D EXAMPLE)

The files in the top right corner are more relevant to each other and are hence placed closer. The file in the

bottom left is not similar to any of the other documents and 1s therefore, placed far apart. Look at the following

three-dimensional space to further understand this concept.

train

whistle

noise

footballer

ball

shoot

cannonball

v

FIGURE 1.8B - EMBEDDING (3-D EXAMPLLE)

The words “footballer” and “ball” are placed very close to each other compared to the words “train” and
“whistle”. Meanwhile the word “noise” 1s close to “whistle” and “cannonball”. Similarly, the word “whistle”

sits between “noise” and “train”.

These were examples of only two and three-dimensional embeddings, but the number of dimensions could
be in the ranges ol thousands as in the case of gpt models [4]. Each number in the vector indicates where the
object 1s along that direction. For example, the city of Calgary, Canada can be represented with the
longitudinal coordinates {51.0447° N, 114.0719° W}. This is a simple vector with two numbers. If the model
wanted to find a city close to Calgary, it will just look for cities with similar coordinates to that of Calgary and
conclude that the city of Red Deer (closest city to Calgary) 1s the closest. Now suppose we wanted to find a
city that was not only close but also as big (population wise) as Calgary. For this task, we will have to include
another dimension that represents the population of the cities. The vector of Calgary will now become
{561.0447° N, 114.0719° W, 1600000}. This extra dimension will allow the model to not only find cities that
are closer to each other (based on the coordinates) but also cities with similar population size (the third
dimension). The model will conclude that the city of Edmonton, Canada with vector {53.5461° N, 113.4937°
W, 1200000} 1s close and of similar size. In this way more and more dimensions can be added to find the

similarities between two or more things based on certain parameters.

Movie Origin Year Genre Duration
Back to The Future us 1985 Sci-fi 116
ZNMD India 2011 Drama 153

FIGURE 1.3C - EMBEDDINGS (4-D EXAMPLE)

In the above example, the vector for the Movie “Back to The Future” would look like {[US], 1985, [Sci-fi],
116} and for “ZNMD” it would look like {[India], 2011, [Drama], 153}. In none of the dimensions are these
moives similar and hence when the model is asked for movies similar to “Back to The Future”, it will definitely

not recommend “ZNMD” but will recommend something like “The Terminator” with the vector {{US], 1984,

[Sai-fi], 107}.

Alfter we have created our token embeddings, we can use these embeddings to calculate the position of every
token in the sequence of tokens. This process 1s known as positional embedding. In this step, a vector 1s
created for every single token. This vector represents the position of each word in a prompt relative to every

other word and which helps in understanding the context.

Word Token Embedding Positional Embedding Final Embedding (Input + Positional)
whistle (0.75/1.5-3.2 0:41] [0:585296 807 Si5:2] (0-75:+0:5 85I 5HiIEO6 I
noise (0.83 1.7 -3.1 0.14) (0.54 1.98 0.69 5.4) (0.83+0.54 1.7+1.98 -]

FIGURE 1.3D - POSITIONAL EMBEDDING

The final mmput embedding, which moves on into the attention layer, 1s a sum of token embedding and

positional embedding.

1.4 Transformer Applications -

Transformer models have found their applications in solving all kinds of natural language processing tasks.
However, they are not restricted to NLPs. Transformers are used in computer vision for image classification
and object detection. Transformer have also achieved proficiency in in predicting protein folding structures.
Apart from these, speech processing, code generation and recommender systems are some of the many fields
m which transformers are being used extensively. Let’s take a look at some important NLP tasks that
transformers are able to perform. For the following examples, we will be using the " pipeline() " function from

the transformers library.

Sentiment Analysis - It 1s used to analyze text in order to determine whether the emotional tone of the

message 1s positive, negative or neutral [J].

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

classifier("I've been waiting for a HuggingFace course my whole life.")

[{'label': 'POSITIVE', 'score': 0.9598047137260437%]

FIGURE 1.4A - SENTIMENT ANALYSIS [6]

A model is selected by the pipeline that has been fine tuned for sentiment analysis. The model assigned a
very high score for the label ‘positive’ and hence the emotional tone of this particular text 1s positive according

to the model.

Text Generation - After we provide a prompt, which could be an incomplete sentence, the model auto-

completes the sentence.

from transformers import pipeline

generator = pipeline("text-generation")

generator("In this course, we will teach you how to")

‘ed_text': 'In this course, we will teach you how to understand and use
'‘data flow and data interchange when handling user data. We '
'will be working with one or more of the most commonly used '

'data flows — data flows of various types, as seen by the
'HTTP'%}]

FIGURE 1.4B - TEXT GENERATION.1 [6]

If we are not happy with the result, we can also choose a model of our choice as follows.

from transformers import pipeline
generator = pipeline("text-generation", model="distilgpt2")
generator (

"In this course, we will teach you how to",

max_length=30,

num_return_sequences=2,

FIGURE 1.4C - TEXT GENERATION.2 [6]

Translation - One of the most used feature/application of transformer models 1s translation. Text from any
language can be translated to any target language. An appropriate model has to be chosen in order to facilitate

the translation. In the figure below, the Helsinki model translates French to English.
from transformers import pipeline
translator = pipeline("translation”, model="Helsinki-NLP/opus-mt-fr-en")

translator("Ce cours est produit par Hugging Face.")

[{'translation_text': 'This course is produced by Hugging Face.'%]

FIGURE 1.4D - TRANSLATION [6]

An appropriate model has to be chosen in order to facilitate the translation. In the figure above, the Helsinki

model translates French to English.

Along with the above-mentioned NLP tasks, transformers are also capable of many other tasks such as

question-answering, summarization, feature-extraction, fill-mask, NER and zero-shot-classification.

2. EMBEDDINGS - EXPLANATION AND TYPES

Introduction -

As we have seen in the previous chapter, embeddings are an important component of the transformer model.
They enable the model to establish relationships between tokens and thus help in the prediction of the next
word in the output sequence. In this chapter we will look at the embeddings in more details while highlighting
the different types and their functions. Two of the most important once that we will focus on are token

embeddings and positional embeddings.

2.1 Token Embeddings -

These capture the meaning and characteristics of each word and establish its relationship with other words.
They can be further classified as word, sub-word or character embeddings. Word embeddings map individual
words to vectors whereas sub-word embeddings are used when the text is tokenized into sub-words (breaking
each word into smaller parts). Byte-Pair encoding and SentencePiece are examples of sub-word embeddings.
Pre-trained embeddings such as Word2vec, GloVe and FastText belong to the group of word embeddings.
When fine linguistic details are to be captured, character embeddings are used which are a character level

representation of the text.

2.2 Positional Embeddings -

‘Without positional embeddings, the transformer is unaware of the order of the tokens. Positional embeddings
help the transformer understand the order/position of tokens in a sequence. The transformer model works
on each token individually and concurrently, which makes it completely unaware of the order and therefore

these embeddings become important as they encode the position of each token in the sequence.

10

a) Absolute Sinusoidal Positional Embeddings -

A popular method to encode such positional information 1s sinusoidal positional embeddings.

As discussed in Vaswani et. al [1], the sinusoidal positional embeddings are given by,

oS
PE(pos, 21)=sin P A
10000d
oS
PE(pos, 2i+1)=cos P 5
10000d

where:

e posis the token’s position in the sequence
e /represents the index of a specific dimension within the embedding vector

o drepresents the total number of dimensions for each token in the embedding vector

A model 1s thus able to differentiate between tokens based on their position in the mput sequence as these
sinusoidal embeddings create a positional embedding for each position in the sequence. Look at the image

below to understand this phenomenon.

1.00

0.75

0.50

0.25

0.00

—0.25

—0.50

—0.75

—-1.00

FIGURE 2 - SINUSOIDAL POSITIONAL EMBEDDINGS [11]

11

Various dimensions are represented by the waves i the image above. The x-axis represents the positions
whereas the y axis denotes the corresponding embedding for that position. Suppose, for an input sequence
with embedding vectors of dimension 4, the token at position 4 would have an embedding of around 0.25,
whereas, a token at position 10 will have a embedding of 1.00. In this way, every position of an mput sequence
1s assigned a unique embedding vector. These embeddings are then added to the token embeddings to get
the final embeddings. Let us look at an example to better understand the process. Consider an input sequence
“The car drove”. After tokenization, we get three embedding vectors for each of the three tokens [“The’, ‘car’,

‘drove’] with a dimension d of 4 as follows,

1) ‘The’ (Ethe): [0.1, 0.2, 0.3, 0.4]
2) ‘car’ (Ecar): [0.5, 0.6, 0.7, 0.8]
3) ‘drove’ (Edrove): [0.9, 1.0, 1.1, 1.2]

Computing the positional embeddings involves the following steps,

For pos 0:

0
PE(0,0)=sin (0) =sin(0) =0
100004
0
PE(0,1)=cos (o) =cos(0) =1
100004
. 0 .
PE(0,2)=sin (2) =sin(0) =0
100004
0
PE(0,3)=cos (2) =cos(0) =1
100004

Therefore, for pos 0, the positional embedding 1s [0, 1, 0, 1]

12

For pos 1:

1
PLE(1,0)=sin (0) =sin(1) =0.8415
100004

1
PE(I,I)-cos(0) =cos(1) =0.5408

100004

1
PE(1,2)=sin < 2) =5in(0.01) =0.01
100004

1
PE(1,3)—COS< 2) =¢0s(0.01) =0.99995
100004

Therefore, for pos 1, the positional embedding 1s [0.8415, 0.5403, 0.01, 0.99995]

For pos 2:
. 2 .
PE(2,0)=sin (0) =sin(2) =0.9093
100004
2 .
PE(2,1)=cos (o) =cos(2) =-0.4161
100004
. 2 .
PE(2,2)=sin (2) =5in(0.02) =0.02
100004
2
PE(2,3)=cos (2) =c0s(0.02) =0.9998
100004

Therefore, for pos 2, the positional embedding is [0.9093, -0.4161, 0.02, 0.9998]

Consequently, adding these positional embeddings to the token embeddings gives us the final embeddings.

For “The’:
FE (The) = TE (The) + PE(0)
FE (The) = [0.1, 0.2, 0.3, 0.4] + [0, 1, 0, 1]
FE(The) = [0.1, 1,2, 0.3, 1.4]
For ‘car’:
FE (car) = TE (car) + PE(1)
FE (car) = [0.1, 0.2, 0.3, 0.4] + [0, 1, 0, 1]

FE (car) = 0.1, 1,2, 0.3, 1.4]

For ‘drove’:
FFE (drove) = TE (drove) + PE (2)
FE (drove) = [0.1, 0.2, 0.3, 0.4] + [0, 1, 0, 1]

FE (drove) = [0.1, 1,2, 0.3, 1.4]

Along with the semantic information, these final embeddings now also contain positional information.

b) Absolute Learned Positional Embeddings -

These provide an alternative to sinusoidal positional embeddings and are employed in models like BERT,
GPT and RoBERTa. The performance and the results produced by learned embeddings were found to be
very similar to sinusoidal embeddings [1]. Learned positional embeddings, instead of using a fixed math

function as in sinusoidal embeddings, directly learn the positional embedding from the data, just as it would

14

learn other parameters of the model. A position vector is learned for every position in the input sequence. A
shortcoming of this method is the maximum length that can be represented 1s bounded. For example, if you
are only able to learn sequences up to a length of 512, you will not be able to represent the input sequences

with a number of tokens exceeding 512.

¢) Relative Postional Embeddings -

Although sinusoidal embeddings are very effective, they fail to provide any information about the closeness
of tokens. For example, in sinusoidal embeddings, position 1 and position 2 are no different than position 1
and position 512. In an input sequence of large number of tokens, it 1s obvious that the tokens at consecutive
positions (or tokens close to each other) will be more related to each other compared to tokens that are far

apart, such as tokens at position 1 and position 512.

Relative positional embeddings provide a solution by allowing us to encode information about the relative
positions of tokens and not just their absolute positions. Instead of representing the absolute position of a
token, we represent the relative distance between a pair of tokens. For example, in the sentence “I am a
footballer”, the position of ‘T’ 1s 1 and ‘“footballer’ 1s 4. Absolute embeddings record these values whereas,
relative embedding will record the distance between the two words which 1s 3. So, if token a is at position 3

and token b is at position 7, the relative position will be b-a, 1.e., 4.

In previous methods, we added the vectors containing such positional information to the token embedding
vectors. In the case of relative embeddings, the attention scores are modified to include the positional
mformation. Such modifications are made by adding a bias term to the attention scores calculations.
Compared to absolute embeddings, relative embeddings are preferred handling longer sequence lengths and

generalize better to sequence lengths unseen during training [12].

Let us dive into the math involved in various relative positional encoding methods. Every paper proposes a
different method to include relative positional information in the transformer. We will look at three papers,

namely, Shaw et.al (2018) [12], Dai et.al (2019) [13] and Raffel et.al (2020) [14].

Firstly, we must know that the query, keys and values of the self-attention block are represented by the

following equations.

q4n~ fq (Xp,m)
k,=fi(x,,n)

Vn= f\ (Xn Jn)

Here, through the functions £, £ and £, the m, and n.positions are comprised in @. , k& and v. The query
and key values are then used to calculate the attentions weights and the final output is the calculated as the

weighted sum over the value representation.

q K,
PA\VT

Admn~ T
’ ! k
Y exp <%>

N
Om~ E dm,nVn

n-1

Now, in the case of sinusoidal embeddings, the function £ will be written as, £ (x.,) = Wi (x.#p.). Note that
‘X’ here represents the token embeddings and ‘p’ represents the positional embeddings. Since, we are
discussing the case of sinusoidal embeddings, the positional embeddings include the absolute positional

formation. The calculation of this ‘p’ was discussed in the previous section.

16

For, relative embeddings, as discussed i Shaw et.al [12], the functions are represented by the following
equations.
¢

q

(Xm) :W(l Xm

fi (x,,,) =W (x, +f)i‘)

n’

£ (x,,n)=W,(x, +f):)

n’

The positional embeddings are now represented by a new element ‘p.” which comprises of the relative
positional information between two tokens. In this method, there 1s no positional embedding in query. The
‘I’ In these equations 1s the distance relative distance between positions ‘m’ and ‘n’. So, for a query at position
m=2 and a key at position n=4, ‘r’ will be equal to 2. Similarly, also for m=51 and n=53, ‘v’ will still be equal
to 2. This shows that the absolute positions of the tokens lose significance as we are now only focusing in the
‘closeness’ of the tokens by incorporating the relative distances in the calculations. Notice that they have
clipped the relative distance, since after a certain amount of distance, the relative positional information seems

to be of no significant benefit.

The Transformer-XL paper [13], emphasized on the expansion of the ‘qukn’ term of equation 2 as follows,

q;rnkn = x;rnVVqTWk,xn + ernVVqTWk,pn + prTnVVqTkan + prTnVVqTWkpn

Along with this paper, many others have worked on the terms p, and p. and proposed that they be replaced
with certain relative values instead of absolute values. The Transformer-XL paper has made three changes to
equation 6. Firstly, p. 1s replaced by a relative embedding as seen in the following equation. Subsequently, the
term pw 1s changed depending on where it 1s appearing in the equation. Observe the third and fourth terms
of equation 6. In the third term, attention is calculated considering position as query and content as key. On
the other hand, in the fourth term, attention is calculated using position as query and again position as key.
For both cases, we have replaced p. with different elements. p. becomes uwhen key is content (token) and v
when key is position. u and vvectors are initialized randomly and learned by backpropagation as we train the

model. Lastly, the same vector Wi was being shared with both x, and p.. To have different weights for both

17

content and position, a new W was used with the position term p.. All these changes have resulted in the

following equation.

q;nkn = er;lqukan + err'quTWk Pm-n + urTnI/VqTkan + prT;quTWkﬁm—n

Authors of the T5 paper [14], while retaining the first term of equation 6, replaced all of the other terms with

a trainable bias b..

qzr'lkn = er;LVVqTkan + bi,j

They also proposed a new equation, making an addition of an extra term to equation 8. The last term of

equation 6 was reintroduced while using different weights.

Amkn = X Wi Wixn+ ppUs Ugpn + b j

Another paper by He et.al [15], focused on the middle two terms of equation 6 and claimed that the relative
positions between two tokens can be modelled using only these two terms. They simply replaced p. and p.

with relative embeddings as follows.

q;l1w1kn = x%M/qTkan + xz;lVVqTWkﬁm—n + ﬁrT;l—nVVqTkan

In the following section, a brief comparison is made between the performance of various positional
embeddings discussed in this chapter. Relative embeddings require an extra step in the self-attention layer to
add the positional matrix to the query-key self-attention matrix. This makes them considerably slower than

sinusoidal embeddings [16]. This can be observed in the image below.

18

ini Training Memo
30k Training Speed 100k Inference Speed 30 raining Ty

-~ —~ — Sinusoidal
i 20k i ;(S)i i 20 m Rotary
721 v :
& 10k o /10 B T5Bias
Z 2 25i o B ALBi
0 512 1024 3072 0 512 1024 3072 0 512 1024 3072
Input Length Input Length Input Length

FIGURE 3 - COMPARISON OF TRAINING TIMLS, INFERENCE TIMES AND MEMORY USE OF VARIOUS
POSITIONAL EMBEDDING METHODS [16].

The T5 Bias here represents the relative embeddings. It can be clearly observed that both tramning and
mference speeds are slower with relative embeddings as compared to sinusoidal or rotary positional
embeddings. They also require more training memory than sinusoidal embeddings and just slightly lesser
memory than rotary embeddings. Due to such challenges, the use of relative positional embeddings is not

very common, especially for larger models.

d) RoPE Rotary Positional Embeddings -

The biggest difference between absolute/relative embeddings and rotary embeddings is that in rotary
embeddings we multiply the positional embeddings into the vectors of query and key, instead of adding them
as in the case of absolute and relative embeddings. So, instead of adding the vectors, we are actually rotating
the vector by a certain angle theta. This angle represents the absolute position of the token in the sequence.
The relative positional information is also preserved as the angle between two vectors corresponds to the
distance between the tokens they represent. Rotary positional embeddings, therefore, encode both the
absolute positional information and the relative positional information of tokens. In the following section, we

will look at the math involved in the implementation of rotary embeddings.

The RoFormer paper [17], has discussed about how such rotary positional embeddings can be implemented.
We will start off with a case where the dimension of the token embedding vector is 2 and then generalize the

formulation for higher dimensional vectors. The query and key vectors are given by the following formulas.

19

qm = fq(xqrm)

ky, = fk (xkr n)

These vectors are represented by two functions £ and £ which take in two arguments. A x. and x, represent
the content vectors whereas m and n are the positions at which these content vectors lie. In the subsequent
step, we take a dot product of the query and key vectors. This dot product 1s defined by a function g which
has three arguments namely, the content x. of query, content x. of key, and the difference n - m i their

positions.
T _ —
Amkn = (fg (em, m), fie (X, 1)) = g(oxm, X, n — M)
After derivation, we obtain the following representations of the functions.

fq(xm:m) = (I/qum)eime
fk(xn: Tl) = (kan)eme

g(xm,xn,n — m) = Re[([/qum)(kan) % ei(m—n)e]

Here, the angle 6 is set to a non-zero constant. Real part of the complex number is represented by ‘Re” and
the complex conjugate number of (Wix) 1s (Wix) *. We can further represent the above equations in

matrix multiplication form using rotation matrix.

(11) (12)
FromCx m)_(cosme —sinm@) W{q,k} W{q,k} x,(,:)
takyiFm, ~ \sinm@ cosmo W{(Zl}) w2

q.k

20

The first matrix is the rotation matrix, the second is the weight matrix and the third is the content vector.
We will now scale this formulation to embedding vectors with dimensions higher than two. Let us look at a
case with d=512. Following general equation is used for vectors of dimension and the rotation matrix gets

transformed as follows.

fiaymym) = RE m Wigsy¥m

cosmf, —sinmb, 0 0 0 0
sinm6f; cosmbO, 0 0 0 0
0 0 cosmf, —sinmo, 0 0
Rg,m = 0 0 sin .mHZ cos .m92 0 0
0 0 0 0 . cosmby,, —sinmby),
0 0 0 0 o Sinmby,, cosmby),

The above matrix is known as the rotary matrix where every two dimensions are rotated at a time. This

phenomenon can be observed in the image below.

X2
(%1, X3) o
1 1 X2
X1 X1
m
d=2
Enhanced |[_ [[J -+ (L] 1 Ll 1] -~ L
Transformer [[[[][T T 1T7] 2 [L] ee- L]
with [T -+« 1T 3 — N L O
Rotary [T [T T][T TT1T7] 4 | | e |
position [[[[]~ [T] [T [T
Embedding [T T []+~ [1] 6 | | e H

FIGURE 4 - ROPE IMPLEMENTATION [17]

21

See how each angle 6 multiplied by position m represents the position of vectors. Also, it must be observed
that only two dimensions are being rotated at a time. Another observation which can be made 1s that the
rotation matrix 1s extremely sparse. We can overcome this sparsity and improve computational efficiency by

transforming our rotation matrix to the following form.

X1 cos mb, —X5 sin mé,

X5 cos mb, Xy sin mb,

X3 cos ml, —X4 sinm@,

Rg,m =| x4 |®| cosmb, |+| x3 |®| sinmb,
Xq-1 cos mbg, —Xq sinmbg,
Xd cos mby,, Xd-1 sinmbg,

RoPE has provided a new way of including positional information in language models. Implementation of
rotary positional embeddings over other methods has demonstrated better performance in certain
experiments. When tested against BERT, RoFormer showed lesser MILM loss during the pre-training phase
[17]. Similarly, when the PerFormer [18] was used with and without RoPE, the training loss was much lower
mn the case when it was used with RoPE. In the following sections we will look at some other embeddings

which are different from the ones we discussed in the previous sections.

2.3 Contextual embeddings -

As opposed to simple word embeddings, in contextual embeddings a word can have different embeddings
based on the context in which the word was found. BERT, which was developed by google uses contextual
embeddings. Contextual embeddings dynamically adjust the representation of a word depending on its

surrounding words. Context is very important for proper functioning of language models.
Consider the following two sentences,

e “Take a right turn.”
e “My answer is right.”

22

where the word ‘right’ has different meanings. In traditional embeddings such as Word2Vec, the word ‘right’
m both the sentences will have the same token. For the model to accurately comprehend the sentence, it
becomes mandatory to take the context into consideration. Contextual embeddings take care of this problem
by assigning a different token to same words if they appear in a different context [19]. Some popular models
which use contextual embeddings are ELMo (Embeddings from language models, BERT (Bidirectional
Encoder Representations from Transformers) and GPT-2 (Generative Pre-trained Transformer) [20]. The

following table compares contextual embeddings with the embeddings discussed in section 2.1.

Feature Traditional Embeddings Contextual Embeddings

(Word2Vec, Glove)
(BERT, GPT, EIL.Mo)

Embedding Type Static Dynamic
Polysemy Handling Word senses cannot be | Can differentiate based on
distinguished context
Context Awareness Context 1s ignored Considers context of the
surrounding
Representation Same for every occurrence of the | Different for each occurrence
word depending in context

TABLE 1 - COMPARISON BETWEEN CONTEXTUAL AND TRADITIONAL EMBEDDINGS

2.4 Multimodal embeddings -

The type of embeddings we have seen so far deal with representation of texts. When data of different
modalities such as, images, audio, and video 1s to be represented, we use multimodal embeddings. The
features and characteristics of such modalities is captured and represented in vector format using multimodal
embeddings [21]. These embeddings help models to understand both textual descriptions and visual elements
simultaneously, which 1s crucial for tasks such as image captioning. Some other examples, from the many
different applications of these embeddings are text-to-speech and speech-to-text tasks, and also visual question

answering, where the model answers questions asked about the content of the image or video [22].

23

Normal embeddings encode and represent relationship between a single data modality such as text or image.
Multimodal embeddings go a step beyond by encoding and establishing relationship between more than one
type of data modalities in a shared embedding space. Based this idea, many models such as CLIP and
ImageBind have been developed. CLIP 1s a model developed by OpenAl which maps both text and image
data in the same embedding space [23]. Similarly, ImageBind by MetaAl brings together six different
modalities namely text, images, audio, depth, thermal and IMU data under a joint embedding space [24]. It
1s able to instantly suggest images based on an audio clip and vice versa [25]. Along with this, ImageBind 1s
capable of many other tasks. Multimodal embeddings have thus enabled us to incorporate multiple modalities

under a single embedding space and hence effective perform such cross-modality tasks.

Embeddings are a crucial inseparable part of transformer models. Both content and positional embeddings
were studied in the sections above. Numerous types of positional embeddings and the math involved have
been discussed in detail. Similarly, content embeddings including contextual and multimodal embeddings

have been covered in this chapter.

24

3. TOKENIZATION - PROCESS AND TYPES

Introduction -

Tokenization 1s the first and a crucial step of transformer models. It transforms the raw text into a certain
form that enables the model to understand human language. The text is broken down mnto smaller units called
tokens (numerical representation of text) which the language model works with. Tokens are not mere
numerical representations of text but are also used in machine learning pipeline as features. In the following
section we will look at the different types of tokenizations and the various tokenization methods employed by
large language models. Let us begin by taking a look at the different types and how the input sequences are

broken down into workable parts.

3.1 Types of Tokenization

Tokenization 1s differentiated based on how the piece of text is broken down into smaller parts. It can either

be broken down into words, characters or sentences in case of large input sequences.

a) Word - Level Tokenization

In word level tokenization, the text 1s broken down mto words which are considered as the smallest
meaningful units. Methods like this are specifically effective when languages with clear word boundaries such
as English are to be processed. Although it 1s very intuitive, there certain limitations associated with it. Words

are differentiated based on spaces or punctuation marks. For example, look at the following sentence.

“The horse jumped over the fence”
J

The tokenization will produce -

[“The”, “horse”, “jumped”, “over”, “the”, “fence”]

Each word will have its own individual token. Now, since our model can only understand numbers, these
tokens are converted to integers know as token IDs. Every token 1s mapped to an unique iteger. Although
word level tokenization 1s very intuitive, there certain limitations associated with it. If it encounters a word that
1s not available i the model’s vocabulary, that word will be treated as unknown and out of vocabulary. With
more complex languages, such as German, which forms compound words using smaller words, the model
would require large vocabularies increasing training time. In such cases, and even with other complex
languages such as Finnish or Turkish, language specific tokenization techniques must be used. Further,
languages like Mandarin and Japanese do not use spaces between words, in which case we have to use

character level tokenization as follows.

b) Character - Level Tokenization

In this method, text 1s broken down into individual characters. This method is specifically useful when word
boundaries are not known. Since, every character i1s an individual token, even unknown words are
conveniently handled. It is highly flexible but results in longer sequences for the model to process. Observe

the following sentence to see how each character represents a token.

“The horse jumped.”

The tokenization will produce -

26

[“T” “hn @ » o« “h” PR T R T R T R TR B TAS B T LI 13 MG M« 1” “ ”]
b s s b b b * b (b

I’s’e’ 7‘]711’In’I)’

Observe how spaces and punctuations are also tokenized. In this method, since every character 1s a valid
token, the chances of having out-of-vocabulary (OOV) words are close to zero. This also means that it is very
easy to implement as the need to create large vocabularies 1s elminated. Another important point, which was
a limitation of the previous technique is that character level tokenization works across all scripts (Latin,
Mandarin, etc.). An important drawback that must be pointed out is that computational complexity of training
and nference 1s increased as this technique produces much longer sequences than word level tokenization.
The model can also experience trouble capturing the meaning as each token comes packed with much less

mmformation.

¢) Subword - Level Tokenization

This tokenization technique combines the best of both word-level and character-level tokenization
techniques. It is a standard and preferred tokenization technique for large language models [26]. As discussed
n the previous sections, both the techniques have some limitations. Word-level needs a very large vocabulary
and can still have many OOV words. Similarly, character-level produces very long sequences and less

meaningful tokens. Subword-level elimimates both of these imitations. Consider the following word,

“Capitalization”

The tokenization will produce (depending on the algorithm) -

[“Capital”, “ization”]

[“Capital”, “##ization”]

[“Cap”, “ital”, “ization”]

27

The two hashes denote that the part ‘ization’ completes the previous word. The main 1dea behind sub-word
tokenization 1s that the frequently appearing words should not be split but the rare words should be split into
more meaningful subwords. Therefore, this technique has now enabled the model to handle the common
words as whole tokens and broken down the rare words into subtokens. The hmitations of both the previous
types of tokenization techniques are thus elimimated. We will no longer have OOV words as rare words will
be decomposed, and the words are still being tokenized as single tokens resulting in smaller sequences than
character-level tokenization. Almost all of the currently available models including GPT, BERT, DistlBERT
and Electra exclusively use subword tokenization [27]. Look at the following section to see how sub-word

tokenization 1s implemented.

3.2 Algortthms of Tokenization -

In the previous section, we learned about the different types of tokenization methods that are available for
NLP task. Now, we will study the various algorithms that are utilized to implement these tokenization

techniques in large language models.

a) Byte Pair Encoding (BPE)

One of the most widely used sub-word tokenization algorithms is Byte Pair Encoding. According to Gage et
al., (1994), where this algorithm was first introduced, it is a very straightforward data compression method
that involves substitution of a new, unused, single byte in the place of a most frequently appearing pair of

bytes [28].

We first start with normalization and pre-tokenization. Normalization involves some basic tasks such as
eliminating unnecessary whitespaces, removing accents, lowercasing alphabets, etc. [29]. Pre-tokenization

focusses on breaking down of the input sequence to word-level. Space tokenization, which separates words

28

based on spaces between them, or any other method that facilitates the decomposition of the input sequence

mto words can be used.

Once the text 1s broken down into words, we move on to create a character level vocabulary. Ivery character
used to form these words is included in this vocabulary. In BPE, frequently appearing pairs are added to this

vocabulary one by one. Let us look at examples to understand this algorithm in detail.

Suppose our corpus of text includes the following words with corresponding frequencies,

(“flag”, 10), (“grab”, 6), (“can”, 14), (“fan”, 2)

First, we will split each word into characters, such that each word will be represented as tokens,

(“f” “l” 3 ” 13 ” 10) (“ » “I”’ “a” “l.» ‘)’ (“C”’ K, « 5 14) (f” 3 ”, “Il”, 2)

This 1s our corpus represented at a character level. Our vocabulary will include all of these characters. Both

corpus and vocabulary are shown below.

C()rplls _ (“F? “1” 3 ” 13 ” 1()) (“ » “r”, “a” “b” ‘), (“C”’ “,” “ 1/1) (F’ 3 ”, “Il”, 2)

VOCablllar}r' _ [“F’, “1”, “a”, “g”’ “r”, “b”, “C”, “11”]

“,.” o«

We will add new pairs to this vocabulary that are appearing frequently. The pair (“a”, “n”) is appearing with

“,.»” « . »

the highest frequency of 16. The second highest one is (“a”, “g”) with 10. Therefore, we choose (“a

€, o«

n”) and

it will be merged as (“a”, “n”) -> “an”. Our vocabulary will be updated accordingly.

29

(_/()II)US _ (“f” “1” “ 7! “ ” 10) (“ 99 “r”’ “(l” “l ” 6), (“C”, “, 14) (“F? “ lIl”, 2)

“F? “1” 9 M G WY 6 “an”]

Vocabulary - [a”, “g”, “r”, “b”, “c”, "n’,

Eventually, we may encounter situations where three characters are being used to form token. Currently, a

“,.” 77

two-character pair with highest frequency of 10 1s (“a”, “g”). We have another pair which is formed by three
[P “w _»

characters (“c”, “an”) and has a frequency of 14. Therefore, we will merge this three-character pair as (“c”,

“an”) -> “can”, and update the vocabulary as follows.

C()l"pus _ (“F’ “1” [” ‘S ” 1()) (“ ” “r”’ “d” “b” ‘) (“(‘a'n”’ 14)’ (“f” “dll 2)

“F’ “l” K. W Y «.» “b” “ » “ » o« » o«

Vocabulary - [a”,“g”, “r c”’, an”, “can”]

We finally have a complete word “can” in our vocabulary. Using the same 1dea, we merge (“a”, “g”) -> “ag”

and update the vocabulary.

Corpus _ (“f”’ “l”’ 3 g 10) (“ » o« ”’ “a” “b” ‘) (“CaIl”, 14)’ (‘ F aIl”, 2)

Vocabular‘!_ [“f” “1” “ 95 “g” 3 ” “b” “C” “Il”’ “aIl”’ 3 ” “ag]

This process is continued until a required vocabulary size is achieved [29]. The size of vocabulary can be
restricted to a certain number. Now, let us see how the vocabulary created will be used to tokenize a sample

mput sequence.

Suppose our tokenizer encounters the word “bag”. Since all the characters of the said word are mncluded in

3

the vocabulary, it will be tokenized as (“b”, “ag”). Another word “man” will be tokenized differently. Since

13

the character “m” does not appear in the vocabulary, this word will be tokenized as (“[UNK]”, “an”).

The BPE algorithm to implement subword tokenization method is pretty straight forward as seen. Due to this

ease and ability to handle OOV words, use of BPE in natural language processing tasks has shown reduction

30

in the size of language models and improved model performance. This tokenization technique is therefore

used by models such as GPT-2 and RoBERTA [30].

b) WordPiece

Word piece 1s another popular tokenization algorithm used by a bunch of different models. It is quite similar
to BPE as this algorithm also focusses on merging pairs. However, as in the previous algorithm, we focussed
on merging the most frequent pairs, in this algorithm we will be merging the pairs using a certain formula.
This model was first introduced by Schuster et al. back in 2012. According to this paper, the pairs which lead
to an increase in the likelihood of the training data, when added to the model, are merged first [31]. A better

understanding of this concept can be gained through the following example.

Suppose we have two pairs (“a”, “##like”) and (“mu”, “##tual”). The two parts of the first pair can frequently
appear on their own, whereas, in the second the pair, the probability of both the parts appearing alone is quite
possibly zero. As a result, this algorithm will first merge the second pair. In short, it first merges the pairs who
are more likely to appear in the corpus as pairs and less likely as individual parts. Look at the following

formula to understand how this inference was made.

Score = (Frequency_of_Pair) / (Frequency_of_Element_1)] x [Frequency_of_Element_2)]

Pairs with a higher score are merged first. The frequency of the pair is divided by the product of the
frequencies of individual parts and doing so, the merging of pairs with less frequent individual parts is

prioritized [32].

Let us understand this using the same vocabulary we used in the BPE example.

C()rpus _ (“f”, “##1’5, “##a”, “##g”! 1())’ (“g”, “##r”, “##a”, “##1)”, ()‘)’ (“C”’ “##a”, “##11”, 14), (“F’, “##a”, “##Il”’
2)

31

V()Cal)ulary _ [“F,’ “1”’ “2‘.”, “g”’ “r”’ “l)”, “C”, “n”]

Notice how the splits are now represented with a slight difference. The hashes are used to denote that a part
1s a continuation of the previous part. Here, the pair with highest frequency of 16 1s (“a”, “n”) and the
frequencies of ‘a’ and ‘n’ are 32 and 16 respectively. The score, therefore, becomes 1/32 which 1s definitely
not the highest. The individual frequency of ‘a’ was very high which led to this score and thus every pair
containing the character ‘a’ will give a high score. Keeping all the pairs containing this character out, we get
two pairs namely (“I”, “1”) and (“g”, “r”). Using the same formula, the score for (“”, “1”) turns out to be 1/12
and for (“g”, “r”) 1s 1/6. Hence, (“g”, “r”) is the pair with the highest score and becomes the first pair to be

merged. The vocabulary takes the following shape.

Corpus _ (“F” “##l”, “##a”’ “##g”’ 10)’ (“gr”’ “##a”’ “##b”, 6), (“C”’ “##a”’ “##I]”’ 14)’ (“f”, “##a”’ “##n”’ 2)

VOC&bulaI‘y _ [“F’, “l”, “a”, “g”’ “r”’ “b”’ “C”’ “n”’ “gr”]

Note, that the hashes preceding ‘T’ have been removed after the merger with ‘g’. Only one pair without ‘a’

now remains and hence it 1s merged.

COTpllS _ (“ﬂ”, u##a”’ u##g”’ 10)’ (ugr”’ “##a”’ “##b”, ()), (“C”, “##a”, “##Il”, 14)’ (“F” u##a”! “##ll”, 2)

Vocabular)! _ [“f”’ “1”’ “a”, “g”’ “r”’ “b”’ “C”’ “Il”’ “gr”’ “ﬂ”]

Since, ‘a’ 1s common to all pairs, we can merge any pair. Let’s merge the first pair we encounter (“f1”, “a”).

C()rpus _ (“ﬂa”, “##g”’ 1())’ (“gr”, u##a”’ “##b”, b), (“C”, u##a”’ “##Il”, 14)’ (“F’, “##H”, “##Il”, 2)

V()Cal)ular}r' _ [“f”, “1”, “a”’ “g”, “r”, “l)”, “C”, “n”’ “gr”, “fl”, “fla”]

32

In the next step, the pair (“fla”, “g”) has the highest and hence, we merge it.

C()I‘puS _ (“fla”, “##g”’ 10), (“gr”’ “##a”’ “##b”’ 6)’ (“C”, “##a”, “##I]”, 14)’ (“fv’ “##a”, “##n”, 2)

VO(‘abLllar}" _ [“f”, “1”’ ‘Sa”, “g”’ “r”’ “b”’ “C”’ “I]”’ “gT,,’ “fl”, “fla”’ ‘Sflag”]

We got our first complete word! This process can be further continued till the desired vocabulary size 1s
achieved. As seen through this example, WordPiece algorithm 1s largely similar to BPE, except for the fact
that we use a different rule to select which pair to merge first. There are, however, some other difference that

must also be pointed out.

As opposed to WordPiece, BPE does not save the merge rules learned, instead only the final vocabulary 1s
saved. To tokenize a word, the WordPiece algorithm finds the longest subword of that word in the dictonary
and splits it at that point [33]. In our case, if we wanted to tokenize the word “flagr” (random word), the
longest subword present in the vocabulary associated with this word would be “flag” and hence we split there
and get [“flag”, “##r”]. The final tokenization of “flagr” will be [“flag”, “##r”] since “r” Is present in our
vocabulary. BPE on the other hand would tokenize this word as [“fla”, “##gr”| as the merges learned in order

are applied.

“ . »
S

If we had to tokenize the word “flags” in which the character “s” 1s not present in the vocabulary, Wordpiece
algorithm will tokenize this word as [“[UNK]”]. One would imagine it to be [“fla”, “g”, “[UNK]”], as in the
case of BPE, but the whole word 1s tokenized as [“[UNK]”] even if a single character is missing in the
vocabulary. In real case scenario, the chances of a “[UNK]” token appearing are very low as all the characters
will be included in the vocabulary. WordPiece has proven to be beneficial in decreasing the vocabulary size,
which leads to text data being encoded efficiently [34]. It has become a preferred tokenizer for foreign
language models such as Japanese, Korean and Arabic as it was originally designed for solving segmentation

problem in such languages [32,34]. The BERT model as proposed in Devlin et al., 2018 uses the WordPiece

tokenization algorithm [35].

33

¢) Unigram

Unigram 1s yet another tokenization techniques which 1s not much similar to BPE or WordPiece. Instead of
creating a vocabulary from scratch, as in the two previous algorithms, we start off from a large vocabulary and
elimmate the unrequired tokens from it, until an optimal desired size vocabulary 1s achieved. This algorithm,
first proposed by Kudo (2018), has the ability to output multiple word segmentations with their probabilities

[35]. This initial vocabulary can be created by any method, even by applying BPE on the original text data.

In Unigram algorithm, while training, we compute a total loss using the current vocabulary over the entire
corpus of text data. Subsequently, we focus on individual tokens and identify the token who’s removal from
the vocabulary will result in the highest loss. Such tokens with high loss contribution to the total loss, are
identified as important tokens and kept in the vocabulary. On the other hand, tokens which do not

significantly increase the overall loss are eliminated, as their existence in the vocabulary was of less importance.

We don’t remove tokens one by one, but eliminate a chunk of tokens, usually 10 to 20 percent (a
hyperparameter that can be controlled) of the tokens associated with low increase in loss [36]. We continue
such iterations until we achieve the required vocabulary size. Note that the base characters are never

elimiated, to ensure the tokenization of any word.

Before implementing the Unigram algorithm, which involves the calculation of total loss followed by observing
the changes that occur when we remove certain tokens, we must first understand the tokenization strategy of

the Unigram model. Let’s start from the corpus used in previous algorithms.

Corpus - (“flag”, 10), (“grab”, 6), (“can”, 14), (“fan”, 2)

The mitial vocabulary will include all the substrings.

34

V()(dl)uldr\ _ [“f” “17!, “(77’ @ » “fl” “ld”, “agn, “fl().”, l().g, “f]dg” “r” “})”’ “gr”’ “r, ”’ “d})”, “gra”’ “I‘I«lb”, “(7!,

[T S L S) “f' 9
n”, “ca”, “an”,

Every token i the Unigram model 1s considered independent from the token before it. To tokenize a give
word, we examine the probabilities of all the different segmentations that can be used to form the word. The
segmentations that give the highest probability are chosen as the tokens of that word. This probability 1s
actually the frequency of that particular token divided by the summation of frequencies of all tokens in the

vocabulary. Take a look at the following example. All the tokens with their frequencies are listed below

(“f”, 12) (“1”’ 10) (“ ”» 32) (“ » 6) (“ﬂ”’ 10) (“la”, 10) (“ag”’ 10) (“ﬂa”’ 10) (“lag’ 10) (“ﬂag”, 1())
(“ b ‘) (“b” ‘) (“ » 6) (“ra”, 6) (“ab”’ 6) (“gra”’ 6) (“I‘ab”’ 6) (“C”’ 14) (“n”’ 16) (“Ca”’ 14)

(“an”, 16) (“fa”, 2)

Token “ra”, for example, will have a probability of 6/224 (sum of all freq. = 224). To tokenize a given word,
we will look at all the possible segmentations of that word and calculate the probabilities. As all tokens in this
method are considered independent, the probability is just the product of probabilities of all tokens used to
form that word. Note that different combinations of tokens can be used to form the same word. Therefore,
through calculations we choose the combination that leads to the highest probability and tokenize the word

using that combination of tokens.

[“ » .M« ”] [“ » o« » o«

Suppose the word “can” is to be tokenized. It can be segmented as a”, , “an”] or [“ca”, “n”].

In each of these case, the probabilities are as follows.

P(“c”, “a”, “n”]) = P(“c”) x P(“a”) x P(“n”) = (14/224) x (32/224) x (16/224) =0.00063
P“c”, “an”]) = P(“¢”) x P(“an”) = 0.0044

P([“ca”, “n”]) = P(“ca”) x P(“n”) = 0.0044

35

It can be seen that tokenizations with the least number of tokens give out higher probability (hence these will

be selected). The word “can” will be tokenized as either [“c”, “an”] or [“ca”, “n”] depending on which 1s
s b

encountered first in the corpus. Observe how we were able to tokenize the word with least number of tokens

(2 mstead of 3). These calculations are fairly straightforward and easy to implement, however, in real case

scenarios, the calculations can become quite tedious, and thus an algorithm known as Viterbi algorithm 1s

used. This was tokenization process in Unigram model. We will now jump back to the loss calculations part

of the Unigram algorithm.

During every iteration, we tokenize every word in the corpus and calculate the loss. Every word 1s associated
with a score (probability) and the loss 1s equal to the negative log likelithood of this score. Summing losses for
all the words gives us the total loss. Observe the following example for a better understanding. Our corpus

was as follows.

Corpus - (“flag”, 10), (“grab”, 6), (“can”, 14), (“fan”, 2)

Furthermore, the tokenizations for each word were calculated using the steps mentioned previously. The

scores for every word in our corpus are as follows.

“flag” - [P, “lag”] = 0.0024

“gral)” _ [“gra”, “1)”] — 0'0007

“can” - [“ca”, “n”] = 0.0044

“fan” - [“”, “an”] = 0.0038

Using these scores, the loss is calculated as follows.

36

Formula [27,35]-

£=—ilog > @
i=1

x€eS(x;)

Where, xi, xz,...xv are all the words in the training corpus and S(x) represents all the possible tokenizations

for the word x.
10 * (-1og(0.0024)) + 6 * (-log(0.0007)) + 14 * (-log(0.0044)) + 2 * (-log(0.0038)) = 191.02

Subsequently, we are required to check how the removal of a token from the vocabulary affects this loss. Such
calculations are quite cumbersome but can be easily implemented using PyTorch. For the sake of

demonstration and understanding how tokens are eliminated. Look at the following example.

3

If we eliminated the token “an”, the word “fan” will have to be tokenized as [“fa”, “n”| which will result in a

score of 0.00068. This will cause the loss to rise by,
-2 (log(0.0038) + 2 * (-log(0.00063) = 3.59

Similarly, if we remove the token “lag” from the word “flag”, the word will be tokenized as [“fla”, “g”] and the
loss would rise by 2.33. On the other hand, if you look at tokens such as “ca” and “gra”, the removal of these
tokens would cause absolutely no effect on the loss. The words associated with these tokens, which are “can”
and “grab”, can be tokenized as [“c”, “an”] and [“g”, “rab”] respectively, with the exact same scores. Hence,
the loss would be unaffected. The Unigram algorithm will thus eliminate these tokens (and other 10 to 20
percent of such tokens) and leave the ones whose removal will cause a hike in the loss such as “lag” and “an”.

The same process is continued until a desired vocabulary size 1s achieved.

37

According to Kudo (2018), not only does Unigram have the same benefits as the BPE algorithm, but it is also
more flexible and thanks to its probabilistic language model origins, it is capable of outputting multiple

segmentations along with their probabilities [35]. Due to such benefits, it is used by models such as T,

mBART, AIBERT, Big Bird and XLNet [36].

d) SentencePiece

SentencePiece 1s not really a tokenization algorithm but it 1s a tokenization tool used in unison with other
algorithms such as BPE. and Unigram to tokenize and detokenize text. First introduced by Google in Kudo
& Richardson (2018), SentencePiece eliminates the need of pre-tokenization which segments the input into
word sequences. Therefore, we can directly train models frow raw sentences, thus enabling us to create an
end-to-end language independent system [37]. This is especially useful for languages such as Japanese and

Thai which do not use spaces to separate words. Each character 1s separated using a special character.

SentencePiece comprises of four components namely, normalization, trainer, encoder and decoder [37].
Semantically equivalent Unicode characters are normalized into canonical forms using normalizer. The
trainer employs a subword segmentation algorithm such as BPE or Unigram to train from the normalized
corpus. The function of encoder 1s to utilize the normalizer to normalize the mput text and tokenize it into
subword sequences using the trainer. Decoder on the other hand converts such subword sequences into

normalized text.

Encoder and decoder are basically tokenizing and detokenizing the text. In the case of SentencePiece,
however, instead of saying tokenization and detokenization, we say encoding and decoding as it is capable of
directly converting text to an i1d sequence. SentencePiece has shown higher BLEU scores over other models,
for translations between Japanese and English, while using a significantly smaller vocabulary [13]. Another
important advantage is that it performs lossless tokenization. No information is lost between tokenization and
detokenization. The exact same normalized text, which was used as input before tokenization, is obtained at
the end of detokenization step. Due to these benefits, especially when foreign languages are to be processed,
SentencePiece automatically becomes an ideal option. Models such as AIBERT, XLnet, Marian and T)

currently use SentencePiece [27].

38

4. EXPLANATION OF BYTE PAIR ENCODING
IMPLEMENTATION IN MATLAB

In this section, we will look at a detailed explanation of the code used to implement the BPE tokenization

algorithm in Matlab. The code 1s as follows.

4.1 BPE Code

clear

clc

function vocab = get_vocab(data)
% Converts the input data into a vocabulary where each word is split into individual characters
% and the frequency of each word is counted.

vocab = containers.Map;

for i = 1:length(data)
line = data(i};

words = strsplit(line); % Split the sentence into words

for j = 1:length(words)

word = words{j};

% Split word into characters and add '</w>' to signify end of word

word_chars = cellstr(reshape(char(word), 1, [])'); % Convert to cell array of characters

39

word_chars{end + 1} = '</w>"; % Add the end-of-word marker

% Join the characters with spaces

word_bpe = strjoin(word_chars, "');

% Update frequency in vocab

if isKey(vocab, word_bpe)

vocab(word_bpe) = vocab(word_bpe) + 1;

else

vocab(word_bpe) = 1;

end

end

end

end

function pairs = get_stats(vocab)

% Returns the frequency count of pairs of symbols (characters) in the vocabulary.

pairs = containers.Map;

vocabKeys = keys(vocab);

for i = 1:length(vocabKeys)

word = vocabKeys(i};

freq = vocab(word);

symbols = strsplit(word); % Split the word into individual symbols

% lterate through symbol pairs

40

for j = 1:(length(symbols) - 1)

pair = sprintf('%s %s', symbols{j}, symbols{j + 1});

if isKey(pairs, pair)

pairs(pair) = pairs(pair) + freq;

else

pairs(pair) = freq;

end

end

end

end

function vocab_out = merge_vocab(pair, vocab_in)

% Merges the given pair of characters in the vocabulary

vocab_out = containers.Map;

% Create a regular expression for the bigram (pair of symbols)

bigram = strrep(pair, ' ', "); % Merge the two symbols (remove space between them)

pattern = ['\<' pair \>']; % Look for exact matches (using word boundaries)

vocabKeys = keys(vocab_in);

for i = 1:length(vocabKeys)

word = vocabKeys(i};

new_word = regexprep(word, pattern, bigram); % Merge the pair in the word

vocab_out(new_word) = vocab_in(word);

end

end

function vocab = byte_pair_encoding(data, n)

% Performs Byte Pair Encoding on a given dataset and returns the final vocabulary

vocab = get_vocab(data);

fori=1:n

% Get the current pair frequencies

pairs = get_stats(vocab);

% Check if there are no pairs to merge

if isempty(pairs)

disp('No more pairs to merge');

break;

end

% Extract keys and values from pairs (this is the frequency map)

pairKeys = keys(pairs);

pairValues = cell2mat(values(pairs));

% Find the most frequent pair

[~, bestldx] = max(pairValues);

best = pairKeys{bestldx}; % The most frequent pair

% Merge the best pair in the vocabulary

vocab = merge_vocab(best, vocab);

end

42

% Display the final vocabulary after all merges
disp('Final Vocabulary after all merges:');
vocabKeys = keys(vocab); % Extracting the final tokens

vocabValues = values(vocab); % Extracting the token frequencies

% Display each token with its frequency
for i = 1:length(vocabKeys)

fprintf('%s -> %d\n', vocabKeys{i}, vocabValues(i});
end

end

corpus = ['In this code we are implementing the byte pair encoding tokenization. BPE merges the most frequent pairs. It is a preferred

tokenization method in many language models'];

data = strsplit(corpus, "."); % Split the text into sentences
n =150; % Perform 10 BPE merges

vocab = byte_pair_encoding(data, n);

disp(vocab);

4.2 Code Explanation

Let us start with the different functions used. We have used four functions in this code namely, get_vocab,
get_stats, merges_vocab and the main function which executes the algorithm byte_pair_encoding. A detailed

explanation of all of these functions is given below.

43

a) function get_vocab(data)

This function 1s used to create a vocabulary from the input data. The mput data in our case will be taken from
the corpus in the main script. Vocabulary here refers to the collection of words and their corresponding

frequencies.

function vocab = get_vocab(data)

We define a new function get_vocab. ‘data’ 1s the mput parameter which contains text from the corpus and

‘vocab’ will be the output of the function.

vocab = containers.Map;

Here, we create a map object which stores the words as keys and their frequencies as values.

for i = 1:length(data)

This loop iterates over each sentence in the input data. Each sentence is treated as a string and processed to

extract words.

line = data{i};

Fach sentence (line) is extracted one by one from the data.

words = strsplit(line);

The line 1s split into individual words by spaces using ‘strsplit()’. The sentence 1s converted into a cell array

of words.

44

for j = 1:length(words)

The mner loop iterates through each word in the sentence.

word = words{j};

Variable ‘word’ stores the current word being processed from the cell array of words.

word_chars = cellstr(reshape(char(word), 1, [])");

This line coverts the word into individual characters. ‘char(word)’ coverts the string into a character array.
‘reshape(char(word), 1, [])’ reshapes the word into a column of characters. ‘cellstr()’ converts this character
column into a cell array where each cell contains one character. The result 1s a cell array ‘word_chars’ that

contains each character of the word as a separate element.

word_chars{end + 1} = '</w>";

A special token ‘<\w>” is added to the end of ‘word_chars’ to indicate the end of the word.

word_bpe = strjoin(word_chars, '');

Characters in ‘word_chars’ are joined in a new string ‘word_bpe’ with spaces separating each character. For

S 6. 6 ¢

example the word “text” in ‘word_chars’ will be {‘C’, ‘e’, X', ‘t’, ‘<\w>}. The same word in ‘word_bpe’ becomes

‘text<\w>.

if isKey(vocab, word_bpe)
vocab(word_bpe) = vocab(word_bpe) + 1;

else

vocab(word_bpe) = 1;

This loop checks if the processed version of the word exists in the vocab map. If it does, its frequency is

mcremented by 1. If it doesn’t the word 1s added to the map with the current frequency.

b) function get_stats(vocab)

This function 1s used to compute and return the frequency count of pairs of characters from the mput

vocabulary. It identifies and counts all the adjacent pairs in the vocabulary.

pairs = containers.Map;

A map is created to store the frequency of pairs of characters in the vocabulary. The pairs(bigrams) will be

the keys and their frequencies will be values.

vocabKeys = keys(vocab);

Extracts all keys (words which are stored as strings of individual characters separated by spaces) from the

vocab.

for i = 1:length(vocabKeys)

This loop iterates over each word (key) i the vocab map.

word = vocabKeys(i};

‘word’ holds the current word being processed.

freq = vocab(word);

46

Retrieves the frequency of the current word from the vocab map. This value indicates how many times the

word has appeared in the dataset.

symbols = strsplit(word);

The current word is split into individual symbols using ‘strsplit(word)’. This converts the string into cell array

of symbols.

for j = 1:(length(symbols) - 1)

This loop iterates through the characters (symbols) in the word, looking at pairs of adjacent symbols. The

loop runs until ‘length(symbols) - 1°, to avoid going out of bounds when accessing symbols{j+1}.

pair = sprintf('%s %s', symbols{j}, symbols{j + 1});

A pair of adjacent symbols (characters), meaning two consecutive characters, are joined using a space between

them.

if isKey(pairs, pair)

pairs(pair) = pairs(pair) + freq;
else

pairs(pair) = freq;

This loop increments the frequency of a pair if it exists or keeps it the same if it does not.

¢) function merge_vocab(pair, vocab_in)

47

This function merges the pair of characters into one symbol across all the words in the vocabulary.

function vocab_out = merge_vocab(pair, vocab_in)

‘vocab_in’ 1s the mput vocabulary. Fach key mn the map 1s a word and each word 1s split into individual
characters separated by spaces. ‘pair’ 1s the pair of characters to be merged. ‘vocab_out’ 1s the ouput

vocabulary after the pairs are merged.

bigram = strrep(pair, ' ', ");

This removes the space between the two characters.

pattern = ['\<' pair '\>'];

Creates a regular expression pattern to find exact matches of the pair in a word. If the pair to be merged 1s ‘a

n’, only the full pair ‘a n’ 1s merged, not the other occurences of ‘a’ and ‘n’ in the word.

vocabKeys = keys(vocab_in);

Retrieves all the keys in the mput vocabulary.

for i = 1:length(vocabKeys)

This loop iterates through every word in the vocabulary.

word = vocabKeys(i};

Retrieves current word from the vocabulary.

48

new_word = regexprep(word, pattern, bigram);

This line replaces the pairs of symbols with their merged version. ‘regexprep’ 1s a matlab function that is used

to perform search and replace operation.

vocab_out(new_word) = vocab_in(word);

This line updates the new vocabulary ‘vocab_out’ with the transformed word ‘new_word’ and assigns the same

frequency as the original word i ‘vocab_in’.

d) function byte_pair_encoding(data, n)

This 1s the main function that performs our algorithm when it 1s called from the main script. It processes the
given dataset, applies BPE algorithm, and returns the updated vocabulary after merging the most frequent

pairs.

vocab = get_vocab(data);

We call the ‘get_vocab’ function. ‘vocab’ stores the initial vocabulary generated from the mput data.

fori=1:n

This loop iterates ‘n’ times. ‘n’ 1s the number of merges to be executed.

pairs = get_stats(vocab);

We call the ‘get_stats’ function. ‘pairs’ stores the pairs of characters as keys and their frequency as values.

49

if isempty(pairs)
disp('No more pairs to merge');
break;

end

This loop checks if any character pairs are found and displays the the print statement when none are found.

pairKeys = keys(pairs);

‘pairKeys’ stores all of the keys from ‘pairs’. ‘keys’ 1s a matlab function that retrieves the keys from the pairs

dictionary.

pairValues = cell2mat(values(pairs));

Values from ‘pairs’ are stored in ‘pairValues’. ‘cell2mat’ coverts values from cell format to a numeric matrix.

[~, bestldx] = max(pairValues);

The ‘max’ function returns the maximum value in ‘pairValues’. The frequency of the maximum value 1s

ignored using ¢~ ’ and only the index of the maximum value is stored using ‘bestIdx’.

best = pairKeys{bestldx};

Using ‘bestldx’, this line retrieves the corresponding pair from ‘pairkeys’. ‘best’ is now the most frequent pair.

vocab = merge_vocab(best, vocab);

We call the merge vocab function. This function merges the most frequent ‘best’ pair in all the words of the

vocabulary.

disp('Final Vocabulary after all merges:");
vocabKeys = keys(vocab); % Extracting the final tokens
vocabValues = values(vocab);

The statement within disp 1s printed and the lists of keys and values from the vocabulary are extracted and

stored.

for i = 1:length(vocabKeys)
fprintf('%s -> %d\n', vocabKeys({i}, vocabValues{i});
end

This loop runs through all the keys in the final vocabulary and the output 1s printed.

Main Script.

corpus = ['In this code we are implementing the byte pair encoding tokenization. BPE merges the most

frequent pairs. It is a preferred tokenization method in many language models'];

data = strsplit(corpus, "."); % Split the text into sentences
n = 150; % Perform 150 BPE merges
vocab = byte_pair_encoding(data, n);

disp(vocab);

51

Our main script is pretty straightforward and simple. The iput text in ‘corpus’ is split into sentences using
‘strsplit’ and stored in ‘data’. ‘n’ denotes the number of times we perform the merging of the most frequent

pairs. Finally, we call the ‘byte_pair_encoding’ function and display the final vocabulary.

4.3 Experimental Results

In the following section we will see how our code 1s executing the Byte Pair Encoding tokenization method

on out given corpus.

I will not go into the theoretical details of how the merging is performed, as it 1s already discussed 1n a previous

chapter. After 10 merges or 10 iterations of our code, the vocabulary takes the following form:

Final Vocabulary after 10 merges:
</w>->2

BPE </w>->1

I n</w> -> 1

| t</w> -> 1

a</w>->1

are</w>->1
byte</w>->1
code</w>->1

encoding </w>->1
frequent</w>->1
implementing </w>->1
in</w>->1

is</w>->1

language</w>->1
many </w>->1
merges</w>->1
m e th od </w> -> 1
mo s t</w>->1
mod el s</w>->1
pair</w>->1
pairs</w>->1
preferred</w>->1
tokenization</w>->2
th e</w> -> 2
this</w>->1

w e</w> -> 1

It can be observed that certain pairs with high frequencies have been merged already. Pairs such as “re”, “od”,
“th” have been merged at the end of 10 iterations. The pairs “od” and “th” appear in many words of the
corpus, so they must have had a high frequency which led to their early merging. Other pairs with a lower
frequency will follow in the subsequent iterations. It must also be noted that pairing is not restricted to single
characters but a single character (or multiple characters) can also be paired to other single or multiple

characters. For example, “a” can be paired with “re” if this is the pair with highest frequency.

After 50 iterations of our code, that 1s, after 50 merges, our vocabulary takes the following form:

Final Vocabulary after 50 merges:
</w>->2

BPE</w> -> 1

In</w> -> 1

It</w> -> 1

a</w> -> 1

are</w> -> 1

byte</w> -> 1

code</w> -> 1

en coding</w> -> 1
frequent</w>->1
implementing</w>->1
in</w>->1
is</w>->1

| anguage</w> -> 1
m any</w> -> 1

m e th od </w>-> 1
merges</w>->1
mo s t</w> ->1
mod el s</w>->1
preferred</w>->1
pair </w> -> 1

pair s</w> -> 1
this</w>->1
the</w> -> 2
tokenization</w> -> 2

w e</w> -> 1

It can be observed that at the end of 50 merges, many more characters have been paired and all the characters

AN TR 1Y

of some words such as “in”, “it”, “tokenization” have been paired to form full words. Therefore, at the end
of 50 iterations, we can observe some full words in the vocabulary. We can stop iterating further if this 1s the

vocabulary that we desire or merging can be continued until all possible pairs have been merged.

After 100 iterations of our code, that is after 100 merges, our vocabulary takes the following form:

No more pairs to merge

Final Vocabulary after all merges:
</w>->2

BPE</w> -> 1

In</w> -> 1

lt</w> -> 1
a</w>->1
are</w> -> 1
byte</w> -> 1
code</w> -> 1
encoding</w> -> 1

frequent</w> -> 1

implementing</w> -> 1

in</w> -> 1
is</w>->1
language</w> -> 1
many</w> -> 1
merges</w> -> 1
method</w> -> 1
models</w> -> 1
most</w> -> 1
pair</w> -> 1
pairs</w> -> 1
preferred</w> -> 1
the</w> -> 2

this</w> -> 1

tokenization</w> -> 2

we</w> ->1

It can be observed that there are no more pairs left to merge. All of the pairs have been merged and our

vocabulary now includes full words. The numbers corresponding to the words represent their frequency or

the number of times they appear in the corpus. The BPE algorithm was therefore, successfully implemented

using this code and how the merging takes place over different iterations was also observed. Finally, a

vocabulary with full words obtained after merging all the possible pairs was also achieved.

Cn
(&

5. EXPLANATION OF POSITIONAL ENCODING
IMPLEMENTATION IN MATLAB

The following matlab script implements positional encoding followed by visualization of the same using a
graph. I have defined a function “positionalEncoding” which generates the positional encodings using sine

and cosine functions.

It processes the mput sentence by splitting it into words and determining the sequence. Then, according to
the embedding dimension specified by the user, the positional embeddings are generated. These embeddings
are then displayed using a plot that compares the embedding vectors of the first and fourth word. This plot

showcases how different positions in a sequence are encoded uniquely.

5.1 Positional Embedding Code

clear

clc

function pos_enc = positionalEncoding(sequence_length, embedding_dim)
% Initialize the positional encoding matrix

pos_enc = zeros(sequence_length, embedding_dim);

% Loop through each position in the sequence
for pos = 1:sequence_length
for i = 1:embedding_dim
if mod(i, 2) == 0 % Even index (cosine)
pos_enc(pos, i) = cos(pos / (107(i / embedding_dim)));

else % Odd index (sine)

pos_enc(pos, i) = sin(pos / (107(i / embedding_dim)));

end

end

end

end

% Input statement

input_statement = 'Positional embeddings include the positional information of a word into the model’;

% Step 1: Preprocess the input statement (split into words)

words = strsplit(input_statement);

% Step 2: Determine the sequence length

sequence_length = length(words); % Number of words in the input statement

% Step 3: Define the embedding dimension

embedding_dim = 128; % For example, 64-dimensional positional embeddings

% Step 4: Generate positional embeddings based on sequence length and embedding dimension

positional_embeddings = positionalEncoding(sequence_length, embedding_dim);

% Display the positional embeddings

disp(positional_embeddings)

%% Heat map

imagesc(positional_embeddings);

colorbar;

title('Positional Embeddings Heatmap');

xlabel('Embedding Dimensions');

ylabel('Word Position');

%% Graph

first_word_embedding = positional_embeddings(1, :);

%disp('Positional embedding vector for the 1st word:");

% disp(first_word_embedding);

fourth_word_embedding = positional_embeddings(4, :);

%disp('Positional embedding vector for the 4th word:'");

%disp(fourth_word_embedding);

figure;

plot(first_word_embedding, 'b', 'LineWidth', 2);

hold on;

plot(fourth_word_embedding, ', 'LineWidth', 2);

legend('1st word', '4th word'");

xlabel('Embedding Dimension');

ylabel('Value');

title('Comparison of Positional Embeddings for 1st and 4th Words');

5.2 Code Explanation

Let us start with the function used.

function pos_enc = positionalEncoding(sequence_length, embedding_dim)

This function takes in two arguments, ‘sequence_length’ and ‘embedding_dim’. The first one is an integer
representing the number of positions in a sequence (words in the sentence). The second 1s an integer
representing the size of the embedding vector for each position. The function outputs a matrix ‘pos_enc,’

where each row corresponds to the positional embedding of a word.

pos_enc = zeros(sequence_length, embedding_dim);

A matrix ‘pos_enc’ is initialized with zeros. The dimensions of this matrix are ‘sequence_length’ rows by
‘embedding_dim’ columns. It stores the positional embeddings for each position in the sequence with one

row per position.

for pos = 1:sequence_length

This 1s the outer loop that iterates over all positions in the sequence. The variable ‘pos’ represents the position

mdex, ranging from 1 to ‘sequence_length’. For each position, we compute the embedding vector.

for i = 1:embedding_dim

This 1s the mner loop that iterates over each dimension of the embedding vector. The variable 1’ represents
the dimension index. Ranging from 1 to ‘embedding_dim’. Each dimension is calculated differently

depending on whether 71’ 1s odd or even.

if mod(i, 2) == 0

Checks if the current dimension index ‘1’ is even using the modulo operator (mod). For even dimensions, the

embedding value 1s computed using the cosine function.

pos_enc(pos, i) = cos(pos / (10”(i / embedding_dim)));

The cosine value 1s calculated based on the position ‘pos’ divided by a scaling factor. The scaling factor 1s

determined by the exponential relationship ‘10 / embedding_dim)’.

else

This branch is executed when the dimension index 1 1s odd. For odd dimensions, the embedding value 1s

computed using the sine function.

pos_enc(pos, i) = sin(pos / (10/(i / embedding_dim)));

Similar to the even case, the sine value 1s calculated using the position ‘pos’ and a scaling factor derived from

the dimension index.

input_statement = 'Positional embeddings include the positional information of a word into the model’;

A string variable ‘input_statement’ is defined, containing a sentence or text input. This serves as the example

mput that will be processed to extract positional embeddings.

60

words = strsplit(input_statement);

The mput string is split into individual words using the matlab function ‘strsplit’. The default delimiter is

spaces which results in a cell array ‘words.

sequence_length = length(words);

The ‘length’ function calculates the length of the ‘words’ array. This value 1s stored in ‘sequence_length’ which

represents the total number of words in the mput sentence.

embedding_dim = 1024;

The variable ‘embedding_dim’ can be set to any value of your choice and is currently set to 1024. This variable
specifies the dimensionality of the positional embeddings. Fach word or position in the sequence will be

represented by 1024 dimensions.

disp(positional_embeddings)

This ‘disp’ function displays the ‘positional_embeddings’ matrix in the command window. The generated
embeddings can be verified here and if not appropriate, necessary changes can be made by changing the
embedding dimension or the scaling factor. The scaling factor of 10000, from the original transformers paper,
does not produce desirable encodings. Instead a factor of 10 was found to be more effective in producing

accurate and usable encodings.

Now let’s look at the code that was used to create the plot that compares the embeddings of two different

positions.

first_word_embedding = positional_embeddings(1, :);

61

The positional embedding for the first word 1s extracted from the "positional_embeddings" matrix. This is

done by selecting the first row (corresponding to the first word) and all columns (embedding dimensions).

fourth_word_embedding = positional_embeddings(4, :);

Similarly, the positional embedding for the fourth word 1s extracted by selecting the fourth row. This 1s useful

for comparing embeddings of words at different positions in the sequence.

figure;

A new figure window 1s created for plotting. This ensures the plot 1s displayed 1n a separate window, making

it easier to analyze.

plot(first_word_embedding, 'b", 'LineWidth', 2);

The positional embedding of the first word is plotted as a blue line. The 'b' specifies the color (blue), and

‘LineWidth’ adjusts the thickness of the line for better visibility.

hold on;

The ‘hold on’ command allows multiple plots to be drawn on the same figure without overwriting the existing

plot.

plot(fourth_word_embedding, 'r', 'LineWidth', 2);

The positional embedding of the fourth word 1s plotted as a red line. The 'r' specifies the color (red), and

‘LineWidth’ ensures the line is clearly visible.

legend('1st word', '4th word');

62

A legend is added to the plot to differentiate between the two lines. The labels ‘1st word’ and ‘4th word’

indicate which line corresponds to which word's embedding.

xlabel('Embedding Dimension');

The x-axis 1s labeled ‘Embedding Dimension’. This indicates that the horizontal axis represents the

dimensions of the embedding vector.

ylabel('Value');

The y-axis 1s labeled ‘Value’. This indicates that the vertical axis represents the numerical values of the

embedding components.

title('Comparison of Positional Embeddings for 1st and 4th Words');

A title 1s added to the plot, providing a concise description of its content. This makes the plot easier to

mterpret and understand.

The following lines of code are used to create a heat map that shows the relationship between embedding

dimensions and word positions.

imagesc(positional_embeddings);

The ‘“imagesc’ function generates a heat map visualization of the ‘positional_embeddings’ matrix. Each cell in
the heat map corresponds to a value in the matrix, with color intensity representing the magnitude of the

value. The x-axis represents embedding dimensions, and the y-axis represents word positions.

colorbar;

63

The ‘colorbar’ function adds a color scale to the heat map. This scale provides a reference for interpreting
the magnitude of the values represented by the colors. For instance, darker colors represent smaller values,

and brighter colors represent larger values.

title('Positional Embeddings Heatmap');

The ‘title’ function adds a title to the heat map. The title ‘Positional Embeddings Heatmap’ provides a clear

and concise description of the plot, making it easier to understand.

xlabel('Embedding Dimensions');

The ‘xlabel’ function labels the x-axis as ‘Embedding Dimensions’. This clarifies that the horizontal axis

corresponds to the different dimensions of the positional embedding vectors.

ylabel("Word Position');

The ‘ylabel’ function labels the y-axis as “Word Position’. This clarifies that the vertical axis corresponds to

the positions of words or tokens in the sequence.

5.3 Experimental Results

In this section we will take a look at the positional embeddings created by our code. We were able to encode
each position (word) in the input sequence with a unique positional encoding using absolute sinusoidal

encoding method as discussed in the original transformers paper.

The positional embeddings matrix is shown below. Note that the rows represent each position (word) in the
mput sequence and the columns represent the number of embedding dimension. The following rows and

columns are extracted from a much larger positional embedding matrix.

64

0.8390 0.5478 0.8342 0.5552 0.8293 0.5625 0.8243 .
0.9130 -0.3998 0.9201 -0.3835 0.9269 -0.3672 0.9333 -0.
0.1544 -0.9858 0.1808 -0.9810 0.2068 -0.9756 0.2324 -0
-0.7449 -0.6803 -0.7207 -0.7059 -0.6958 -0.7304 -0.6702 -0.

-0.9650 0.2405 -0.9758 0.1972 -0.9845 0.1539 -0.9912 [}
-0.3052 0.9438 -0.3556 0.9249 -0.4047 .9035 -0.4521
0.6330 0.7936 0.5835 0.8298 0.5322 .8626 0.4793
0.9939 -0.0743 0.9992 -0.0034 0.9995 . 0669 0.9948

[N~]
[]

FIGURE 5 - POSITIONAL EMBEDDING MATRIX

5697
3509

. 9695

7537

.1107
.8799
.8918
.1363

=B~]

.8194
.9394
.2577
-0.
-0.
-0.
.4252
.9854

6440
9960
4979

.5768
.3347
.9628
.7760
. 0677
.8541
.9175
.2043

It can be clearly observed that every embedding dimension of each position has been assigned with an unique

value. The formula mentioned in the transformers paper for sinusoidal embeddings was used. A scaling factor

of 10 was used instead of the original 10000. It was observed that the embeddings produced using 10000 as

a scaling factor were repetitive. Using 10 as a scaling factor instead, enabled the production of unique

encodings across all dimensions and positions.

‘We can also observe this using graphs and heat maps.

C i of Positional Embeddi for 1st and 4th Words Positional Embeddings Heatmap

Value
Word Position

-0.6] 50

0.8

0 10 20 30 40 50 60 70
Embedding Dimension

- r
10 20 30
Embedding Dimensions

FIGURE 6 - GRAPH & HEAT MAP 62/64

40

LN LRI TR

60

0.8

0.6

0.4

0.2

65

The above images represent a graph and heat map of a sequence length of 62 and embedding dimension of
64. The graph compares the embeddings of 1" and 4" word across 64 dimensions. A sinusoidal pattern along

with a unique embedding value for each dimension can be observed.

for 1st and 4th Words Positional Embeddings Heatmap
: e T i
0.8
10
0.6
20| 0.4
5 0.2
E 830 0
s = il
s
= | 0.2
40
-0.4
50 -0.6
-0.8
60 1
.
100 200 800 L 500 600 50 100 150 200 250 300 350 400 450 500
Embedding Dimension Embedding Dimensions

FIGURE 7 - GRAPH & HEAT MAP 62/512

Again, in the above images, a graph and a heat map of a sequence length of 62 and embedding dimension of

512 can be seen. A similar sinusoidal pattern, as compared to the previous graph can be observed.

Comparison of Positional Embeddis for 1st and 4th Words Positional Embeddings Heatmap
08
10
06
20} 0.4
Ag 0.2
=
] 3 30
3 g :
> °
=
o
= -0.2
40
-0.4
50 R -0.6
-0.8
13 u | 3
200 400 600 800 1000 1200 100 200 300 400 500 600 700 800 900 1000
Embedding Dimension Embedding Dimensions

FIGURE 8 - GRAPH & HEAT MAP 62/1024

66

A graph and a heat map of a sequence length of 62 and embedding dimension of 512 are seen in the above
mmages. All of the heat maps included in this chapter demonstrate similar behaviour regardless of the
embedding dimensions. Through this map we can visualize the relationship between embedding dimensions
and word positions. The wave like pattern in the map arises from the alternating sine and cosine functions.
At lower embedding dimensions, the wave patterns are more tightly packed, due to high frequency
oscillations. As the dimensions increase, the waves become more spaced due to the lower frequency

oscillations.

This frequency variation ensures that different dimensions capture positional information at varying
granularities. Lower embedding dimensions oscillate more rapidly because of their high frequency. This
means their values change signilicantly for small changes in position. As a result, they can represent small,
fine-grained distinctions between nearby positions in a sequence. Higher embedding dimensions oscillate
more slowly because of their low frequency. This means their values change gradually over a larger range of
positions. As a result, they capture more general or smoother relationships between positions that are

farther apart.

for 1st and 4th Words

Comparison of Positional Embeddings for 1st and 11th Words

Comparison of Positional Embeddings for 1st and 6th Words

Value
Value
Value

300 300 0 0 600
Embedding Dimension Embedding Dimension Embedding Dimension

FIGURE 9 - EMBEDDING VALUE COMPARISONS BETWEEN DIFFERENT WORD POSITIONS

In the above images, the embedding values of 4", 6°, and 11" position are compared with the embedding
values of 1" position. A distinct sinusoidal wave 1s seen in each plot representing unique embedding values

for each position.

Thus, a fully functioning positional embedding algorithm was implemented in this section through matlab.
Not only were we able to create unique positional encodings, for each position (word), using an embedding

vector, but we were also able to visualize these positional embeddings, through plots and maps.

67

6. FINLE TUNING A SMALL LIM TO REPLACE AN INDUSTRY
STANDARD LIM

Introduction

Large Language Models demand a significant amount of computation power for their training and inference.
Training an LLLM can cost millions of dollars depending on its size. Models such as Gemini and GPT-4 have
set back their respective companies anywhere from $30 million to over $100 million [38]. Therefore, it is

impractical for an average user to create a model from scratch for their own specific use.

Even if we keep the training part aside, using LLLLMs for inference can also be a costly affair. High quality
GPUs are required, which makes running such models locally extremely difficult. These models can be run
on cloud, but if the task requires a certain amount of security, downloading them on a local device becomes
the only solution. Therefore, instead of using an LLM with a very high number of parameters, we can instead

train a much smaller LLLM on our specific task.

This process 1s known as fine tuning. With the rise of models like BERT, GPT, and T5, fine-tuning has
enabled users to achieve state-of-art performance across various NLP (Natural Language Processing) tasks
such as sentiment analysis, question answering, and text summarization. A fine-tuned model is a pre-trained
model trained on a downstream task. The model becomes efficient at solving the problem it was fine-tuned
on and, despite its smaller size, can achieve performance comparable to a considerably larger model, if trained

correctly.

In this chapter, we will look at the fine-tuning process in detail, and discuss the different types while focusing
on parameter efficient methods such as LoRA (Low Rank Adaptation) and quantization. Later, we will fine-

tune a small model to match the performance of a significantly bigger industry scale model.

68

6.1 Fine-Tuning: Concept and Types

Fine-tuning 1s the process of taking a pre-tramed model and adapting it to a specific task by training it on a
smaller, task-specific dataset. Unlike traiming from scratch, fine-tuning leverages the knowledge acquired from
large scale corpora and requires fewer resources. There are three main types of LLM fine-tuning methods

[39], namely,

a) Unsupervised Fine-tuning

This method eliminates the need for labeled data. The LLLLM instead processes a large collection of unlabeled
text, enhancing its comprehension of language. While beneficial for new domains like law and medicine, it is

less accurate for classification and summarization tasks.

b) Supervised Fine-Tuning (SFT)

The LLM is trained with task specific labeled data during SFT. For instance, fine-tuning an LLLLM for text
classification mvolves a dataset of text snippets paired with class label. Although this approach is effective, it

demands a large amount of labeled data, making it both expensive and time consuming.

¢) Prompt Engineering (Instruction Fine-Tuning)

The LLM i1s directly provided with natural language instructions, making it valuable for developing specialized
assistants. You can directly prompt the LLM with the guidelines on how you want to receive the outputs. This
method minimizes the need for large datasets but its effectiveness depends entirely on the quality of the

prompts.

Of the three methods listed above, we will be using supervised fine-tuning (SFT) to fine-tune our model.

69

Step 1: Step 2a: Step 2b:
Pretraining Conventional finetuning Parameter-efficient finetuning

Unlabeled text corpus

9 Smaller target dataset Smaller target dataset
— - -
e w w
LLM Pretrained LLM Pretrained LLM
Unsupervised Add and finetune
pretraining Finetuning Original weights additional
{ remain frozen parameters
Pretrained LLM Finetuned LLM Finetuned LLM
1 L
Original model parameters Only finetune small set of
are updated (expensive) new parameters (cheap)

FIGURE 6.1 - TRADITIONAL AND PARAMETER EFFICIENT FINE-TUNING [40]

Of the three methods listed above, we will be using supervised fine-tuning (SFT) to fine-tune our model. In
traditional fine-tuning we update every weight and bias of every parameter, which makes it computationally
expensive [41]. Instead, we can use a process called parameter-efficient fine tuning, in which only a subset of

the parameters are updated. We will look into all of this in subsequent sections.

6.2 Prerequisites to Fine-Tuning

The two main steps that you should carefully consider before fine-tuning are selecting the dataset and choosing
the right pre-trained model. Even before that, you must have a solid understanding of the task you plan to

train your model on.

a) Task Selection

Transformer models have been successfully applied to various NLP tasks, including text classification, named
entity recognition (NER), text summarization, translation, etc. In this study, we will be performing sentiment
analysis which mvolves classifying a given piece of text as positive or negative sentiment. Sentiment analysis 1s

used across various industries to extract insights from textual data.

70

Two of my favorite examples are financial market analysis and political analysis/opinion mining. Investors
can use sentiment analysis to analyze financial news and social media discussions. Thus, stock movement can
be predicted based on public sentiment toward a company. Similarly, discussions on online social platforms
can also be used for understanding voter sentiment toward a party or a candidate. Other applications include

customer service automation, customer feedback and reviews and social media monitoring.

b) Dataset

We have selected the Stanford Sentiment Treebank (SST-2) dataset which 1s a widely used benchmark for
evaluating sentiment classification models. It contains 67,349 phrases extracted from movie reviews, with each
phrase labeled as either positive or negative. A well-structured dataset is critical for fine-tuning LLMs
effectively. We will preprocess the SST-2 dataset by tokenizing it with the BERT tokenizer and
padding/truncating the sequences to ensure correct input lengths. Proper data preprocessing ensures that the

model receives structured input, improving training efficiency and generalization performance.

¢) Model

For our task, we will be selecting the BERT-base-uncased model. BERT (Bidirectional Encoder

Representations from Transformers) is a 12 layer transformer model with 110 million parameters [42].

BERT (Ours) OpenAl GPT

FIGURE 6.2 - BERT VS GPT MODEL ARCHITECTURE [42]

As opposed to GPT, BERT transformer uses bidirectional self-attention [42]. GPT uses constrained self-

attention meaning every token can only a attend to context on its left, whereas, tokens in BERT can attend

71

context in both left and right directions. By fine-tuning BERT on SST-2, we will attempt to increase the

performance of BERT on sentiment analysis task.

6.3 Parameter Efficient Fine-Tuning : LoRA and Quantization

Traditional fine-tuning 1s computationally expensive, requiring significant memory and processing power.
Parameter Efficient Fine-Tuning (PEFT) techniques aim to reduce this cost by modifying only a small subset
of model parameters while keeping majority of the pre-trained weights frozen. This allows the model to adapt

to new tasks efficiently, without needing to update all the parameters.

PEFT methods introduce lightweight trainable components, such as Low-Rank Adaptation (LoRA), to
achieve comparable performance with far fewer tramnable parameters. Additionally, techniques like
quantization help reduce the model’s memory footprint, enabling deployment on resource constrained

devices.
a) Low-Rank Adaptation (LoRA)

LoRA i1s a PEFT fine-tuning technique i which we freeze the weights of the pre-trained model and introduce
trainable rank decomposition matrices in each layer of the transformer architecture of the model [43]. This
significantly reduces the number of trainable parameters for downstream tasks. By using LoRA, we will only

be training 50 percent of the models parameters and still achieve a massive increase in performance.

o S

I TR

Pretrained

Weights r

P 0.

W e Rdxd

N IR

) ¢ I

FIGURE 6.10 - LORA (ONLY A AND B IS TRAINED) [43]

In raditional fine-tuning, we update all the weight matrices (Wq, Wk, Wv) of the transformer model which

results in high memory usage and computational cost. With LoRA, instead of updating the full weight matrix

72

W, we freeze it, and introduce two small matrices A and B, which capture task specific adaptations. Since A

and B have low rank structures, the number of trainable parameters is significantly reduced.

b) Quantization

Quantization 1s a technique for optimizing transformer models by reducing the precision of numerical
representations. Standard deep learning models use 32-bit floating point precision, but quantization allows
for lower precision formats (such as 8 or 4-bit integers). This reduces model size due to the lowering of bit

precision and also reduces inference times [44].

In our study, we will use post-training quantization (PTQ) which applies quantization while eliminating the
need of retraining the entire pre-trained model weights [44, 45]. This approach reduces memory usage and

accelerates inference while preserving accuracy [45]

6.4 The Fine-Tuning Process

In this section, we will fine-tune our model on the previously discussed dataset. The hyperparameters, code,
training hardware and all of the other important aspects related to the fine-tuning process will be presented
step by step. Our code implementation includes data preprocessing, model loading, evaluation and training.
‘We will use a train-validation split, monitor the loss function, and track accuracy and F1 score during training.

Let us begin with the first step, which loading the model and dataset.

a) Installing the Required Libraries

The first step is to install the libraries that are required for our task,

pip install transformers -9

73

pip install bitsandbytes -g

!lpip install datasets -g

The transtormers library 1s required for loading and fine-tuning BERT. The bitsandbytes 1s used for efficient
quantization to optimize memory usage and datasets library 1s used to load the SST-2 dataset, which will be

used for sentiment analysis.

b) Setting up Quantization

Before loading the model we must first setup quantization if we wish to use a quantized model.

from transformers import BitsAndBytesConfig
bnb config = BitsAndBytesConfig (

load in 4bit=True,

bnb 4bit quant type="nf8",

bnb 4bit compute dtype="floatlo",

bnb 4bit use double quant=True,

By enabling 1oad in 4bit=True , the model’s weights are stored in 4-bit format, making fine-tuning
feasible on limited hardware. The ‘normal float 8’ of bnb_4bit quant type="nf8" 1isan advanced 4-
bit format optimized for better stability with deep learning tasks compared to older formats.
bnb 4bit compute dtype="floatl6", ensures computations are performed in half-precision.
bnb 4bit use double quant=True applies quantization twice which is useful for limited ram setups.

This should be set to false 1f you want to avoid the risk of losing accuracy.

74

¢) Loading the Model and Dataset

Now let’s load the model, tokenizer and the dataset,

from transformers import BertForSequenceClassification

model = BertForSequenceClassification.from pretrained("google-bert/bert-
base-uncased", num labels=2)

from transformers import BertTokenizer

tokenizer = BertTokenizer.from pretrained("google-bert/bert-base-uncased")

from datasets import load dataset

dataset = load_dataset("SetFit/sst2")

We load the pre-trained BERT model for sequence classification with number of labels equal to 2. This
mitialized BERT for binary classification, making it suitable for sentiment analysis where the labels
correspond to positive and negative sentiments. Note that we are not quantizing the model. For this study, we
had the required memory to perform fine-tuning on an unquantized BERT. We fine-tuned BERT using

A100 GPU on google colab pro, therefore quantization was not required.

The appropriate tokenizer for BERT is loaded to convert text into token IDs for processing. The SST-2

dataset 1s loaded from HuggingFace which contains text and corresponding labels.

75

d) Preprocessing the Dataset

The next step 1s to make the dataset ready for processing,

def tokenize function (example) :
return tokenizer (example["text"],
padding="max length",
truncation=True,
max length=128)

tokenized dataset = dataset.map(tokenize function, batched=True)

The above function converts the text into tokens. This function applies padding to ensure that all sequences
have the same length (padding="max length") and truncates longer sequences to 128 token
(max_length=128). The function is then a applied to the dataset using dataset.map which efficiently

transforms the text into tokenized mputs suitable for model training.

¢e) Configuring LoRA for PEFT

We will now define the settings for LoRA and wrap our model with LoRA layers.

from peft import get peft model

from peft import LoraConfig, TaskType

peft config = LoraConfig(task type=TaskType.SEQ CLS,
inference mode=False,
r=16, lora alpha=32,
lora dropout=0.1)

76

lora model = get peft model (model, peft config)

lora model.print trainable parameters ()

LoRA is configured using LoraConfig , where TaskType.SEQ CLS specifies that the task is sequence

classification. The rank r=16 controls the size of the low rank decompostion matrices. A smaller ‘r’” results

in faster training but can harm the accuracy. A larger ‘v’ is able to extract more information leading to a better

accuracy. The lora alpha=32 scales the adapted weights to ensure effective learning. A dropout rate of

lora dropout=0.1 is used to prevent overfitting. Finally, we wrap our model with LoRA using

get peft model (model, peft config). After wrapping, this is the number of available parameters

for training,

trainable params: 591,362 || all params: 110,075,140

f) Calculating Metrics : Accuracy and F1 Score

We will define a function compute metrics which calculate the accuracy and F1 score.

from sklearn.metrics import accuracy score, fl score

import numpy as np

def compute metrics(eval pred):

logits, labels = eval pred

predictions = np.argmax(logits, axis=-1)

accuracy = accuracy_ score (labels, predictions)

trainable%:

0.5372

77

fl = fl1 score(labels, predictions, average="macro")

return {"accuracy": accuracy, "fl": fl}

This function receives predictions from model and extracts the logits and labels 1ogits, labels =
eval pred. Using np.argmax (logits, axis=-1) it selects the class with the highest probability as
the predicted label. The accuracy is calculated using accuracy = accuracy score(labels,
predictions) , while the F1 score is calculated using £1 = f1 score(labels, predictions,
average="macro"). These metrics will provide msights on how well the model is performing on the

sentiment analysis task.

g) Defining Training Arguments

To fine-tune effectively, we define training arguments which specify key training parameters.

from transformers import TrainingArguments, Trainer

training args = TrainingArguments (
output dir="sonu/bert-base-uncased/peft-lora",
learning rate=3e-4,
per device train batch size=64,
per device eval batch size=64,
num train epochs=5,
weight decay=0.05,
eval strategy="steps",
eval steps=25,
save strategy="steps",
load best model at end=True,

78

logging dir="./logs",
logging steps=10,
optim="paged adamw 32bit",
warmup steps=25,

lr scheduler type="cosine",

report to="wandb",

Majority of the parameters here are selected on trial-and-error basis. There 1s no right or wrong value, and
the correct values are established based on how the model behaves during training. A
learning rate=3e-4 was chosen as it provided the best accuracy and decently short training time. A
smaller learning rate ensures gradual and stable learning but training can be slower. A larger learning rate

leads to larger weight updates per step but can cause instability and prevent model from converging.

A larger batch size requires more GPU memory but is faster. A smaller batch size is preferred when less
memory 1s available but the training is considerably slower. I used a large batch size as I had access to a GPU.
Model 1s trained for 5 epochs and a weight decay of 0.5 is chosen to prevent overfitting. Evaluation 1s set to
25 steps, meaning the models performance is evaluated every 25 steps. The learning rate does not suddenly
mcrease to the specified value. It gradually increases from 0 to 3e-4 in the first 25 steps. After that the learning
rate decays following a cosine curve. The AdamW optimizer was used which uses adaptive learning rates and
weight decay to prevent overfitting. This optimizer works well with models like BERT. An optimizer 1s an
algorithm that adjusts the model’s parameters (weights and biases) during training to minimize the loss
function. It does this by calculating gradients (how much each parameter affects the loss) and updating the
parameters in a way that reduces the loss over time. The optimizer adjusts the weight in the direction that

reduces the loss using a learning rate. Finally, we report the metrics to WandB for visualization.

h) Setting up Trainer and Training the model

We setup trainer
79

trainer = Trainer (
model=lora model,
args=training args,
train dataset=tokenized dataset["train"],
eval dataset=tokenized dataset["test"],
tokenizer=tokenizer,

compute metrics=compute metrics,

trainer.train ()

trainer.evaluate ()

Using Trainer we load the model, tokenizer, training arguments, train and test datasets and the compute
metrics function. Finally, using trainer. train () we train the model and using trainer.evaluate ()

we evaluate its performance after training.

6.5 Fine-Tuning Results

In this section we will examine 1if our model was able to converge and how significantly we were able
to increase its performance on the task of sentiment analysis. Let us start by looking at the

performance of pretramed BERT before fine tuning on the SST-2 dataset.

80

© # bert-base-uncased : Pretrained Performance
trainer.evaluate()

4]

I [29/29 00:10]

{'eval_loss': 0.6911117434501648,
'eval_model_preparation_time': 0.0082,
'eval_accuracy': ©.5123558484349259,
'eval_f1': 0.3931804058252952,
‘eval_runtime': 11.2383,
'eval_samples_per_second': 162.036,
‘eval_steps_per_second': 2.58}

FIGURE 11 - BERT PRETRAINED PERFORMANCE

As it can be seen, the performance 1s incredibly low with the model getting majority of the predictions

wrong. If we wanted to use it for sentiment analysis, this model would need fine-tuning.

Therefore, using the settings we discussed in the previous section, we will train the model for 5 epochs. The
model is evaluated every 25 steps and the training loss, validation loss, accuracy and F1 score over 5 epochs

can be seen 1n the following figure.

S (545/545 13:29, Epoch 5/5]
Step Training Loss Validation Loss Accuracy F1

25 0.699300 0.670744 0.656233 0.655214

50 0.434100 0.370269 0.842394 0.841229

75 0.381800 0.292687 0.876991 0.876824
100 0.315300 0.274022 0.887424 0.887196
125 0.226700 0.253867 0.897858 0.897839
150 0.296400 0.258429 0.892916 0.892864
175 0.276800 0.249676 0.899506 0.899466
200 0.307000 0.230128 0.908841 0.908775
225 0.256400 0.226605 0.911587 0.911587
250 0.214200 0.237235 0.905546 0.905515
275 0.257500 0.227603 0.910489 0.910480
300 0.268600 0.237177 0.902252 0.902186
325 0.212900 0.243209 0.901153 0.901063
350 0.222100 0.226948 0.909390 0.909388
375 0.185900 0.227775 0.910489 0.910476
400 0.162200 0.233456 0.909940 0.909920
425 0.162400 0.239464 0.907194 0.907129
450 0.199000 0.224904 0.912685 0.912675
475 0.201200 0.231697 0.909940 0.909917
500 0.185900 0.229556 0.910489 0.910470
525 0.198400 0.230690 0.909390 0.909369

FIGURE 12 - BERT TRAINING FOR 5 EPOCHS

81

We start off with a training and validation loss of almost 0.7. Both of the losses show gradual and consistent
drop over the 5 epochs or 525 steps. After around 250 steps, we see a training loss of 0.21 and validation loss
of 0.23. After this point we don’t see a significant drop in either losses. The accuracy and f1 scores have also
reached 0.9 by this point. We still continue to check 1s the losses can drop further. As validation loss 1s not
mcreasing, which means there 1s no risk of over fitting and hence, we continue this process for 275 more
steps. The sweet-point lies between 375 and 400 steps where the training loss has dropped to 0.16 and the
accuracy has reached 0.91. By the end of our training we see significant improvement is both the losses and

the metrics.

Sonu313131/peft-lora-sst2 : Performance Metrics
trainer.evaluate()

v

I [29/29 00:01]

{'eval_loss': 0.24163399636745453,
'eval_model_preparation_time': @.0055,
'eval_accuracy': 0.9060955518945635,
'eval_f1': 0.9060764048604,
'eval_runtime': 1.7676,
'eval_samples_per_second': 1030.199,
'eval_steps_per_second': 16.406}

)

FIGURE 13 - BERT FINE-TUNED PERFORMANCE

Finally, after 5 epochs, evaluating the model gave these results. We are able to improve both the accuracy
and f1 scores significantly. Accuracy went up from 0.51 to 0.91 and similarly, f1 score shot up from 0.39 to
0.91. This shows a 78% increase in the accuracy and 133% increase in the f1 score. Therefore, it is safe to say
that the fine-tuning process turned out to be a huge success. We can also visualize these improvements with

the following graphs which were acquired from Wandb.

82

Train Loss

0.6

0.5

0.4

0.3

0.2

100 200 300 400 500

FIGURE 14 - TRAINING LOSS

It can be clearly seen that the loss decreases consistently over 5 epochs or 525 steps. This shows that the
model was able to converge. The loss mitially decreases sharply and from around step 150, follows a slow

decline rate. Lowest value of 0.16 1s reached between 400 and 450 steps.

Validation Loss

loss

0.6

0.5

0.4

0.3

e~ —~______—%ain/global_step
100 200 300 400 500

FIGURE 15 - VALIDATION LOSS

The validation loss also consistently decreases overtime. It also does not, at any point show a considerable
mcrease. Through this we can conclude that through our model training strategy, we were successful in

avolding overfitting.

Accuracy

0.9

Accuracy

0.8

0.7

train/global_step

100 200 300 400 500

FIGURE 16 - ACCURACY

The accuracy showed a sharp rise in the first 100 steps and continued to increase slowly thereafter. A final

accuracy of 0.91 was achieved by the model which is also reflected in the graph.

F1 Score

0.9

0.85

0.8

0.7

train/global_step

100 200 300 400 500

FIGURE 17 - F1 SCORE

84

The F1 score also mimicked the behavior of accuracy and showed quick rise in the first 100 steps. The growth

slowed down after that and the highest F1 score of 0.91 was achieved by the end of the training.

Learning Rate

2.5e-4

0.0002

1.5e-4

0.0001

100 200 300 400 500

FIGURE 18 - LEARNING RATE

The learning rate followed a path according to the settings in our training arguments. Initially, for the first 25
steps, learning rate increased from 0 to the specified learning rate, as we had set warmup_steps=25.
Thereafter, the learning rate followed a decay in the form of a cosine wave. This was set by

Ir_scheduler_type=“cosine”.

6.6 Performance Comparison with Larger Models

In this section, we will compare the performance of our fine-tuned model with other well-known industry
scale models. To make a direct comparison of the performance, we will evaluate these models on the same

dataset and try to compute the accuracy and f1 scores.

85

The models that I compared our fine-tuned model with are Mistral-7B-v0.3, GPT-2-large and Falcon-7B-
mstruct. All of these models are 7 to 60 times larger than our model, therefore a considerably higher

performance 1s expected. The accuracy and 1 scores of the models after evaluation are in the graph below.

BERT Fine-Tuned vs Larger Models

1
0.8
0.6
0.4
0.2
0

BERT Fine-Tuned Mistral-v0.3 GPT-2 Large Falcon-instruct

110M B 812M 7B
B Accuracy I F1 Score

FIGURE 19 - BERT FINE-TUNED VS LARGER MODELS

It can be clearly seen that none of the models were able to outperform our model despite their larger sizes.
Both Mistral and Falcon were able to achieve accuracies of only 509% meaning half of their predictions were

mcorrect. The {1 scores were below 0.5 for both the models.

86

[19] # mistralai/Mistral-7B-v@.3 : Performance Metrics
trainer.evaluate()

()

e [29/29 01:51]

{'eval_loss': 4.87389612197876,
'eval_model_preparation_time': 0.0051,
'eval_accuracy': 0.500274574409665,
‘eval_f1': 0.4688395893059537,
'eval_runtime': 115.0939,
'eval_samples_per_second': 15.822,
'eval_steps_per_second': 0.252}

FIGURE 20 - MISTRAL PERFORMANCE ON SST-2

© # tiiuae/falcon-7b-instruct| : Performance Metrics
trainer.evaluate()

)

G [29/29 01:28]

{'eval_loss': 3.8714394569396973,
‘eval_model_preparation_time': 0.0042,
'eval_accuracy': 0.49917627677100496,
‘eval_f1': 0.33296703296703295,
‘eval_runtime': 91.7442,
'eval_samples_per_second': 19.849,
‘eval_steps_per_second': 0.316}

FIGURE 21 - FALCON PERFORMANCE ON SST-2

° 1 # openai-community/gpt2-large : Performance Metrics
2 trainer.evaluate()

:' EEesssssssssssseess) [29/29 00:46)

{'eval_loss': 0.6495855450630188,

‘eval_model_preparation_time': 0.0244,
‘eval_accuracy': 0.627677100494234,
'eval_f1': 0.6120925620582528,
‘eval_runtime': 48.2017,
‘eval_samples_per_second': 37.779,
'eval_steps_per_second': 0.602}

FIGURE 22 - GPT-2 (LARGE) PERFORMANCE ON SST-2

Of the 3 models that we evaluated, only GPT-2 (large) was able to provide a somewhat satisfactory result.

Both the accuracy and f1 scores of this model were over 0.6 but still considerably lower than our model.

I was not ready to stop here and was motivated to keep searching for larger models who our model is capable
of competing with. Based on these findings, I thought it would be appropriate to evaluate large GPT models

which are industry scale models used by millions of users on a daily basis.

87

The larger GPT models, however, are closed source. Hence, to evaluate them, we have to make api calls to
the OpenAl API. Using a python script, we send sentences to OpenAl and ask the model to classify the
sentence as positive or negative. We then store these predictions in an empty list and at the end calculate the

accuracy and f1 scores. The script that was used to evalute the performance 1s as follows,

import openai
import datasets
import time

from sklearn.metrics import accuracy score, fl score

Load SST-2 dataset from Hugging Face
sst2 = datasets.load dataset ("SetFit/sst2", split= "test")

Initialize OpenAI API
client = openai.OpenAl (api key="api key")

We import openai to interact with OpenAl’s API for text classification. time 1s used for adding delays to

avoid hitting API rate imits. We then load the dataset and create and OpenAl API client using our API key.

Define a function to classify sentiment
def classify sentiment (sentence, model="gpt-4o-mini"):
"""Sends a sentence to GPT-4o-mini (or GPT-3.5) and returns the
predicted sentiment."""
try:
response = client.chat.completions.create (
model=model,
messages=|

{"role": "system", "content": "You are a helpful assistant
trained to classify sentiment."},

{"role": "user", "content": f"Classify the sentiment of
the following sentence as either 'positive' or 'negative':\n\nSentence:
'{sentence}'\nSentiment:"}

1y
max tokens=10,
temperature=0 # Deterministic output
)
prediction = response.choices[0].message.content.strip() .lower ()
return 1 if "positive" in prediction else 0 # Map text response
to label

except Exception as e:
print (f"Error: {e}l")
return None # Handle API failures gracefully

88

We define classify sentiment function to send a sentence to OpenAl’s GPT model and extract

response.

We first create a chat completion request using client.chat.completions.create method. First
message, with the role “system”, sets the assistant’s behaviour by instructing to classify the sentiment. The
second message, with the role “user”, provides the input sentence and asks the model to classify it as either
« L] L« » 5 . Lo) .
positive” or “negative”. max_tokens=10 ensures the model’s response remains short. The temperature

1s set to zero to make the model give deterministic outputs.

response.choices[0] .message.content retrives the text output from the first response choice.

The function then returns 1 if the response contains the word “positive” and 0 if “negative”.

The except Exception as e blockis triggered if any error occurs during API request. The error details
are displayed using print (f"Error: {e}") and instead of crashing the program, it gracefully returns

“None” to indicate that the sentiment classification of that sentence was unsuccessful.

Evaluate the model on the SST-2 dataset
true labels = []
predicted labels = []

for i, example in enumerate(sst2):
sentence = example["text"]
true label = example["label"] # 1 = Positive, 0 = Negative

prediction = classify sentiment (sentence, model="gpt-4o-mini")
if prediction is not None:
true labels.append(true label)
predicted labels.append(prediction)
Print progress every 10 samples
if (i + 1) & 10 ==

print (f"Processed {i+1}/{len(sst2)} sentences...")

Avoid hitting OpenAI rate limits (adjust as needed)
time.sleep(0.5)

89

‘We store the ground truth labels and model predictions, and loop through each sentence in the dataset using
for i, example in enumerate (sst2). We then extract sentence and label, call the function and
add the true and predicted labels to their respective list if the prediction is valid. The progress is printed every

10 sentences and a delay of 0.5 seconds is added between every request so we don’t hit OpenAl’s rate limits.

Compute Accuracy and Fl-score
accuracy = accuracy score (true labels, predicted labels)
f1 = f1 score(true labels, predicted labels)

print ("\n GPT-4o-mini Sentiment Analysis Results on SST-2:")

print (£" Accuracy: {accuracy:.4f}")
print (£" F1 Score: {fl:.4f}")

The accuracy and f1 score are then calculated and printed. I compared the performance of our model with

GPT-3.5 and GPT-40-mini. The results are as follows,

BERT Fine-Tuned vs GPT Models

1.00
0.95
0.90
0.85
0.80
BERT Fine-Tuned GPT-40-mini GPT-3.5
110M 8-12B 175B
B Accuracy [F1 Score

FIGURE 23 - BERT FINE-TUNED VS GPT-40-MINI & GPT-3.5

90

Finally, the GPT models were able to provide a comparable performance to our model. GPT-3.5 fell just

short whereas GPT-40-mini was able to outperform us by a tiny margin.

(4]

GPT-40-mini Sentiment Analysis Results on SST-2:
Accuracy: 0.9314
F1 Score: 0.9270

FIGURE 24 - GPT-40-MINI PERFORMANCE

[

GPT-4 Sentiment Analysis Results on SST-2:
Accuracy: 0.8935
F1 Score: 0.8827

FIGURE 25 - GPT-3.5 PERFORMANCE

In figure 18, the model is incorrectly named as GPT-4, while it 1s GPT-3.5. GPT 3.5 which is over 1500 times
bigger than our model achieved an accuracy of 0.89 and f1 score of 0.88. Although the scores are lower than

our model, they are pretty impressive. GPT-40-mini was able to do better than us with accuracy of 0.93 and

f1 score of 0.92.

While we compare the performances, we must not forget that the models that we are comparing our model
with are industry scale models used by people around the world on a daily basis. They are trained on world-
class data with millions of dollars being spent on the training. The fact that our model was able to compete
with them 1s a huge achievement considering the limited resources that were available to us for fine-tuning.
Through the chapter, not only were we able to obtain theoretical knowledge about fine-tuning but were also
able to implement this knowledge to make a model perform the task of sentiment analysis at a world-class
level of performance. This model 1s now freely available for use on HuggingFace at Sonu313131/peft-lora-
sst. Through this study, we were able to contribute to the field of natural language processing (NLP) and
machine learning (ML) by providing a model that despite its smaller size, produces high tier industry standard

performance on the task of sentiment analysis.

91

CONCLUSION

The rapid advancement of Large Language Models (LLLMs) has revolutionized the field of Natural Language
Processing (NLP), enabling powerful applications across industries. However, the reliance on massive,
computationally expensive models poses significant challenges in terms of accessibility, cost and efficiency.
This thesis has systematically explored the key components of LLMs - tokenization, embeddings, and fine-

tuning.

A crucial aspect of this result was the in-depth analysis of tokenization and embeddings, the foundational
blocks of modern LLMs. We examined various tokenization techniques including Byte Pair Encoding
(BPE), WordPiece, and Unigram, and implemented these algorithms in code to provide practical insights
mto their workings. Similarly, embeddings such as token, contextual, multimodal, and positional were also
thoroughly explored. The code implementation demonstrated their practical use, offering a comprehensive

understanding of how these techniques power modern LLMs.

Through rigorous experimentations, we have shown that a smaller, properly fine-tuned LILM can match the
performance of much larger industry-scale models. By leveraging fine-tuning techniques such as LoRA and
quantization, we have been able to significantly enhance the capabilities of a compact model, making it a
viable alternative to heavyweight models for sentiment analysis. This achievement is more than just a
technical optimization - it 1s a paradigm shift in how we approach model deployment, proving size is not

the ulimate determinant of effectiveness.

The implications of this work are profound. A well-tuned smaller model not only reduces inference costs
but also democratizes Al by enabling high-performance NLP applications on local machines, without the
need for extensive computational infrastructure. This approach opens the door for more sustainable and

cost-effective Al solutions.

Looking ahead, the future of Al lies in striking the perfect balance between efficiency and power. As fine-
tuning techniques continue to evolve, the gap between smaller and larger models will continue to shrink,
making Al more accessible than ever before. This thesis serves as a testament to the potential of fine tuning
- not just as a means to improve models, but as a revolutionary approach to redefining the scale at which Al

operates.

92

References -

1. Vaswam A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention 1is all you need.
arXiv.org. 2017. Available from: https://arxiv.org/abs/1706.03762

2. Jurafsky D, James M. Stanford. Large Language Models [Internet]. [cited 2025 Feb 11]. Available
from: https://web.stanford.edu/” jurafskv/slp3/10.pdf

3. Tiktokenizer [Interned]. [cited 2025 Feb 11]. Available from:
https://tiktokenizer.vercel.app/Pmodel=gpt-4

4. OpenAl. New and improved embedding model [Internet]. [cited 2025 Feb 11]. Available from:
https://openai.com/index/new-and-improved-embedding-model

O

Amazon Web Services, Inc. What 1s Sentiment Analysis? - Sentiment Analysis Explained - AWS
[Internet]. [cited 2025 Feb 11]. Available from: https://aws.amazon.com/what-is/sentiment-analysis

6. Hugging Face NLP Course. Transformers, what can they do? [Internet]. [cited 2025 Feb 11].
Available from: https://huggingface.co/learn/nlp-course/en/chapter1/3

11) Rush A. Harvard SEAS. The Annotated Transformer [Internet]. [cited 2025 Feb 11]. Available
from: https://nlp.seas.harvard.edu/2018/04/03/attention.htiml

12) Shaw P, Uszkoreit J, Vaswani A. Self-Attention with Relative Position Representations. arXiv.org.
2018. Available from: https://arxiv.org/abs/1803.02155

13) Dai1Z, Yang Z, Yang Y, Carbonell J, Le QV, Salakhutdinov R. Transformer-XL.: Attentive
Language Models Beyond a Fixed-Length Context. arXiv.org. 2019. Available from:
https://arxiv.org/abs/1901.02860

14) Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, et al. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning
Research. 2020;21(140):1-67. Available from: http://ijmlr.org/papers/v21/20-074.html

15) He P, Liu X, Gao J, Chen W. DeBERTa: Decoding-enhanced BERT with Disentangled Attention.
arXiv.org. 2020. Available from: https://arxiv.org/abs/2006.03654

16) Press O, Smith NA, Lewis M. Train Short, Test Long: Attention with Linear Biases Enables Input
Length Extrapolation. arXiv.org. 2021. Available from: https://arxiv.org/abs/2108.12409

17) Su], Lu 'Y, Pan S, Murtadha A, Wen B, Liu Y. RoFormer: Enhanced Transformer with Rotary
Position Embedding. arXiv.org. 2021. Available from: https://arxiv.org/abs/2104.09864

18) Choromanski K, Likhosherstov V, Dohan D, Song X, Gane A, Sarlos T, et al. Rethinking
Attention with Performers. arXiv.org. 2020. Available from: https://arxiv.org/abs/2009.14794

19) Liu Q, Kusner MJ, Blunsom P. arXiv.org. 2020. A Survey on Contextual Embeddings. Available
from: https://arxiv.org/abs/2003.07278

https://arxiv.org/abs/1706.03762
https://web.stanford.edu/~jurafsky/slp3/10.pdf
https://tiktokenizer.vercel.app/?model=gpt-4
https://openai.com/index/new-and-improved-embedding-model/
https://aws.amazon.com/what-is/sentiment-analysis/
https://huggingface.co/learn/nlp-course/en/chapter1/3
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1901.02860
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2003.07278

20) Ethayarajh K. arXiv.org. 2019. How Contextual are Contextualized Word Representations?
Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings. Available from:
https://arxiv.org/abs/1909.00512v1

21) Farley P. Microsoft Learn. Multimodal embeddings concepts - Image Analysis 4.0 - Azure Al
services. [cited 2025 Feb 11]. Available from: https://learn.microsoft.com/en-us/azure/ai-
services/computer-vision/concept-image-retrieval

292) Hugging Face. What 1s Visual Question Answering? [Internet]. [cited 2025 Feb 11]. Available from:
https://huggingface.co/tasks/visual-question-answering

23) OpenAl [Internet]. CLIP: Connecting text and images. [cited 2025 Feb 11]. Available from:
https://openai.com/index/clip,

24) Girdhar R, EI-Nouby A, Liu Z, Singh M, Alwala KV, Joulin A, et al. ImageBind: One Embedding
Space To Bind Them All arXiv.org. 2023. Available from: https:/arxiv.org/abs/2305.05665

25) ImageBind by Meta Al [Internet]. [cited 2025 Feb 11]. Available from:
https://imagebind.metademolab.com/demo

26) Wolleb B, Silvestri R, Vernikos G, Dolamic L, Popescu-Belis A. Assessing the Importance of
Frequency versus Compositionality for Subword-based Tokenization in NMT. arXiv.org. 2023.
Available from: https://arxiv.org/abs/2306.01393

27) Hugging Face Transformers [Internet]. Summary of the tokenizers. [cited 2025 Feb 11]. Available
from: https://huggingface.co/docs/transformers/en/tokenizer summary

28) Gage P. A new algorithm for data compression. Semanticscholar.org. 1994. Available from:
https://www.semanticscholar.org/paper/A-new-algorithm-for-data-compression-
Gage/1229¢0045f1fe8c79cce03c7cl4ef4b4643a2118

29) Hugging Face NLP Course [Internet]. Normalization and pre-tokenization. [cited 2025 Feb 11].
Available from: https://huggingface.co/learn/nlp-course/chaptert/4>fw=pt

30) Bostrom K, Durrett G. Byte Pair Encoding 1s Suboptimal for Language Model Pretraining.
arXiv.org. 2020. Available from: https://arxiv.org/abs/2004.03720

31) Schuster M, Nakajima K. Japanese and Korean voice search. In: 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) [Internet]. IEEE; 2012 [cited
2025 Feb 11]. Available from: https://dot.org/10.1109/icassp.2012.6289079

32) Hugging Face NLP Course. WordPiece tokenization [Internet]. [cited 2025 Feb 11]. Available

from: https://huggingface.co/learn/nlp-course/en/chaptert/6

33) Qarah F, Alsanoosy T. A Comprehensive Analysis of Various Tokenizers for Arabic Large
Language Models. Applied Sciences. 2024 Jun 29;14(183):5696. Available from:
https://www.mdpi.com/2076-3417/14/13/5696

34) Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. arXiv.org. 2018. Available from:
https://arxiv.org/abs/1810.04805

94

https://arxiv.org/abs/1909.00512v1
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/concept-image-retrieval
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/concept-image-retrieval
https://huggingface.co/tasks/visual-question-answering
https://openai.com/index/clip/
https://arxiv.org/abs/2305.05665
https://imagebind.metademolab.com/demo
https://arxiv.org/abs/2306.01393
https://huggingface.co/docs/transformers/en/tokenizer_summary
https://www.semanticscholar.org/paper/A-new-algorithm-for-data-compression-Gage/1aa9c0045f1fe8c79cce03c7c14ef4b4643a21f8
https://www.semanticscholar.org/paper/A-new-algorithm-for-data-compression-Gage/1aa9c0045f1fe8c79cce03c7c14ef4b4643a21f8
https://huggingface.co/learn/nlp-course/chapter6/4?fw=pt
https://arxiv.org/abs/2004.03720
https://doi.org/10.1109/icassp.2012.6289079
https://huggingface.co/learn/nlp-course/en/chapter6/6
https://www.mdpi.com/2076-3417/14/13/5696
https://arxiv.org/abs/1810.04805

35) Kudo T. Subword Regularization: Improving Neural Network Translation Models with Multiple
Subword Candidates. arXiv.org. 2018. Available from: https://arxiv.org/abs/1804.10959

36) Hugging Face NLP Course [Internet]. Unigram tokenization. [cited 2025 Feb 11]. Available from:
https://huggingface.co/learn/nlp-course/en/chaptert/7 2tw=pt

37) Kudo T, Richardson J. SentencePiece: A simple and language independent subword tokenizer and
detokenizer for Neural Text Processing. arXiv.org. 2018. Available from:
https://arxiv.org/abs/1808.06226

38) Buchholz K. The Extreme Cost Of Training AI Models. Forbes [Internet]. 2024 Aug 23 [cited
2025 Feb 11]; Available from: https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-
extreme-cost-of-training-ai-models

39) The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review
of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities
(Version 1.0) [Internet]. [cited 2025 Feb 11]. Available from:
https://arxiv.org/html/2408.13296v1#Ch1.S5

40) Raschka S. Finetuning LL.Ms Efficiently with Adapters. Ahead of Al [Internet]. 2023 May 20 [cited
2025 Feb 11]; Available from: https://magazine.sebastianraschka.com/p/finetuning-llms-with-

adapters

41) LLMs: Fine-tuning, distillation, and prompt engineering. Google for Developers [Internet]. [cited
2025 Feb 11]; Available from: https://developers.google.com/machine-learning/crash-
course/llm/tuning

42) Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. arXiv.org. 2018. Available from:
https://arxiv.org/abs/1810.04805

43) Hu EJ, Shen Y, Wallis P, Allen-Zhu Z, 1. Y, Wang S, et al. LoRA: Low-Rank Adaptation of Large
Language Models. arXiv.org. 2021. Available from: https://arxiv.org/abs/2106.09685

44) Jeon H, Kim Y, Kim J joon. L.4Q: Parameter Efficient Quantization-Aware Fine-Tuning on Large
Language Models. arXiv.org. 2024. Available from: https://arxiv.org/abs/2402.04902

45) Xiao G, Lin]J, Seznec M, Wu H, Demouth J, Han S. SmoothQuant: Accurate and Efficient Post-
Traming Quantization for Large Language Models. arXiv.org. 2022. Available from:
https://arxiv.org/abs/2211.10438

95

https://arxiv.org/abs/1804.10959
https://huggingface.co/learn/nlp-course/en/chapter6/7?fw=pt
https://arxiv.org/abs/1808.06226
https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-extreme-cost-of-training-ai-models/
https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-extreme-cost-of-training-ai-models/
https://arxiv.org/html/2408.13296v1#Ch1.S5
https://magazine.sebastianraschka.com/p/finetuning-llms-with-adapters
https://magazine.sebastianraschka.com/p/finetuning-llms-with-adapters
https://developers.google.com/machine-learning/crash-course/llm/tuning
https://developers.google.com/machine-learning/crash-course/llm/tuning
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2402.04902
https://arxiv.org/abs/2211.10438

	1. THE TRANSFORMER – MODEL OVERVIEW AND APPLICATIONS
	Introduction
	1.1 Transformer architecture
	1. 2 Tokenization –
	1.3 Embeddings –
	1.4 Transformer Applications -

	2. EMBEDDINGS – EXPLANATION AND TYPES
	Introduction –
	2.1 Token Embeddings –
	2.2 Positional Embeddings –
	a) Absolute Sinusoidal Positional Embeddings –
	b) Absolute Learned Positional Embeddings –
	c) Relative Postional Embeddings -
	d) RoPE Rotary Positional Embeddings -

	2.3 Contextual embeddings –
	2.4 Multimodal embeddings –

	3. TOKENIZATION – PROCESS AND TYPES
	Introduction –
	3.1 Types of Tokenization
	a) Word – Level Tokenization
	b) Character – Level Tokenization
	c) Subword – Level Tokenization

	3.2 Algortihms of Tokenization –
	a) Byte Pair Encoding (BPE)
	b) WordPiece
	c) Unigram
	d) SentencePiece

	4. EXPLANATION OF BYTE PAIR ENCODING IMPLEMENTATION IN MATLAB
	4.1 BPE Code
	4.2 Code Explanation
	4.3 Experimental Results

	5. EXPLANATION OF POSITIONAL ENCODING IMPLEMENTATION IN MATLAB
	5.1 Positional Embedding Code
	5.2 Code Explanation
	5.3 Experimental Results

	6. FINE TUNING A SMALL LLM TO REPLACE AN INDUSTRY STANDARD LLM
	Introduction
	6.1 Fine-Tuning: Concept and Types
	a) Unsupervised Fine-tuning
	b) Supervised Fine-Tuning (SFT)
	c) Prompt Engineering (Instruction Fine-Tuning)

	6.2 Prerequisites to Fine-Tuning
	a) Task Selection
	b) Dataset
	c) Model

	6.3 Parameter Efficient Fine-Tuning : LoRA and Quantization
	a) Low-Rank Adaptation (LoRA)
	b) Quantization

	6.4 The Fine-Tuning Process
	a) Installing the Required Libraries
	b) Setting up Quantization
	c) Loading the Model and Dataset
	d) Preprocessing the Dataset
	e) Configuring LoRA for PEFT
	f) Calculating Metrics : Accuracy and F1 Score
	g) Defining Training Arguments
	h) Setting up Trainer and Training the model

	6.5 Fine-Tuning Results
	6.6 Performance Comparison with Larger Models

	CONCLUSION

